说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 多体项展式
1)  many body expansion
多体项展式
1.
The analytical potential energy function for the ground state of HCl\++\-2(X\+1A′) is derived by many body expansion method using its equilibrium geometry, dissociation energy, harmonic frequencies and force constants calculated.
优化并计算了HCl2 + (X1A′)系统的几何构型、离解能和谐性力常数 ,采用C2V对称结构作为参考坐标 ,并用多体项展式方法导出了其势能函数的分析表达式 。
2)  many-body expansion method
多体项展式方法
1.
The analytical potential energy function for the ground state OUH ( 4A′) was derived using the many-body expansion method.
采用多体项展式方法 ,导出OUH( X4 A′)基态分子的分析势能函数 ,获得OUH( X4 A′)体系的势能面 ,考察了这个势能函数的基本性质 ,正确地复现出OUH分子的平衡结构特征 。
3)  many-body expansion theory
多体项展式理论
1.
The potential energy function of CH2 has been derived from the many-body expansion theory.
034 eV,用多体项展式理论推导了基态CH2分子的解析势能函数,其等值势能图准确再现了基态CH2分子的结构特征及其势阱深度与位置。
2.
Similarly,the harmonic frequency has been calculated and the analytic potential energy function of linear molecule N2O isomer is derived by many-body expansion theory for the first time.
在此基础上,使用多体项展式理论方法,导出NO分子的全空间解析势能函数,该势能函数准确再现了NO(C)平衡结构。
3.
For the ground state of GeH_2(X~1A_1),the analytic potential energy function has been derived by the many-body expansion theory,which is successfully described its configuration and the dissociation energy.
应用多体项展式理论导出了基态GeH_2分子的解析势能函数,其等值势能图准确再现了基态GeH_2分子的结构特征。
4)  many body expansion method
多体项展式方法
1.
Analytical potential energy function for Kr HF system has been derived using many body expansion method based on the result before.
根据所得到Kr HF体系的两种弱结合分子的结构参数、离解能和谐性力常数 ,采用多体项展式方法 ,对Kr HF体系的性质和势能函数重新进行了研究。
2.
Analytical potential energy function for SSAr system was derived using many body expansion method.
采用多体项展式方法,导出SSAr(X3Σ)基态分子的分析势能函数,获得SSAr(X3Σ)体系的势能面,考察了这个势能函数的基本性质,正确地复现出SSAr分子的平衡结构特征,对SSAr体系势能函数进行了研
5)  many-body expansion potential energy function
多体项展式势能函数
6)  polynomial expansion
多项式展开
1.
We compare the Fokker Planck equation with the Vlasov equation in the aspects of the origin, physics meaning, solution, and also introduce the method of polynomial expansion to solve the equation.
比较了Fokker Planck方程和Vlasov方程在来源、意义和解法方面的关联和不同 ,同时介绍了一种多项式展开束团耦合模式来求解Fokker Planck方程的方法 ,并在静态分布中包含了势阱畸变的效
补充资料:半硬壳式弹体(见弹道导弹弹体)


半硬壳式弹体(见弹道导弹弹体)
semi-hard-shelled missile body

bQn yingkeshi dan桩半硬壳式弹体(semi一hard一shelled、ssilebody)见弹道导弹弹体。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条