说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 配对函数
1)  pairing function
配对函数
1.
In order to overcome the defects of key-space of symmetric algorithm, this paper presents a kind of symmetric encryption algorithm based on pairing function.
随着网络安全问题日益突出,数据加密技术越来越受到关注,针对目前各种类型的对称算法密钥空间存在的缺陷,该文基于配对函数提出了一种对称加密算法,该算法采用了一次一密、多重算法对数据进行加密,密钥空间足够大,有效地防止了网络非法用户的唯明文攻击。
2.
Based on the pairing function and trapdoor homomorphic permutations method to aggregate the signatures,a dependent sequential multisignature scheme is presented.
基于配对函数和陷门同态置换的签名聚合方法提出了安全的顺序相关的多重数字签名方案,具有以下特点:利用配对函数来记录签名顺序,使得签名可依序进行;签名人数不受限制;签名较短、签名和验证过程简单;无须第三方为每次签名生成密钥以及签名者的编号等。
2)  mating function
配对函数
1.
In this paper,we mainly study the bisexual G-W branching processes and the spectral radiuses on the certain mating function L(x,y)=x bisexual G-W branching processes.
本文主要介绍了两性G-W分支过程,并计算了一类特殊配对函数L(x,y)=x的两性G-W分支过程的谱半径。
3)  contrast matching function
对比度比配函数
4)  bilinear pairings
双线性配对函数
1.
Due to the various applications of the bilinear pairings in cryptography, there have been many pairing-based signature schemes.
由于双线性配对函数表现出的良好密码学特性,目前已经引起了众多关注。
5)  relativistic partition function
相对论配分函数
6)  Logarithm function
对数函数
1.
According to the fact of the undrained shear strength decreasing during field vane test,applying the cylindrical expansion theory,it is assumed that saturated soft clay satisfies Tresca yield criterion,and then the disturbance degree function is given on the basis of the sensibility of saturated soft clay,and the function D is logarithm function of the plastic radius.
根据原位十字板试验扰动导致饱和软黏土不排水强度降低的事实,应用圆柱形孔扩张理论,假设饱和软黏土在塑性阶段满足Tresca屈服条件,提出了一种基于饱和软黏土灵敏度的扰动度D且是塑性区半径的对数函数。
2.
On the basis of the undrained shear strength being the logarithm function of the disturbance degree,the elasto-plastic solution of the cylindrical expansion is obtained.
在考虑塑性区内不排水强度是扰动度的对数函数的基础上,得到了考虑扰动的球形孔扩张的弹塑性解答。
3.
This paper proves strictly the soundness of a formula of the logarithm function of a complex variable and points out the wrong conclusion concerning it in《Engineering Mathematics-Functions of a Complex Variable》compiled by the Mathematics Teaching and Research Section of Xi an Jiaotong University.
本文严格证明了关于复变量对数函数的一个公式的正确性,同时指出了西安交通大学数学教研室编写的《工程数学———复变函数》一书中有关结论的错误。
补充资料:高斯函数模拟斯莱特函数
      尽管斯莱特函数作为基函数在原子和分子的自洽场(SCF)计算中表现良好,但在较大分子的SCF计算中,多中心双电子积分计算极为复杂和耗时。使用高斯函数(GTO)则可使计算大大简化,但高斯函数远不如斯莱特函数(STO)更接近原子轨道的真实图象。为了兼具两者之优点,避两者之短,考虑到高斯函数是完备函数集合,可将STO向GTO展开:
  
  
  式中X(ζS,A,nS,l,m)定义为在核A上,轨道指数为ζS,量子数为nS、l、m 的STO;g是GTO:
  
  
  其变量与STO有相似的定义;Ngi是归一化常数:
  
  
  rA是空间点相对于核A的距离;ci是组合系数;K是用以模拟STO的GTO个数(理论上,K→∞,但实践证明K只要取几个,便有很好的精确度)。
  
  ci和ζ在固定K值下, 通过对原子或分子的 SCF能量计算加以优化。先优化出 ζS=1 时固定K值的ci和(i=1,2,...,K),然后利用标度关系式便可得出ζS的STO展开式中每一个GTO的轨道指数,而且,ci不依赖于ζS,因而ζS=1时的展开系数就是具有任意ζS的STO的展开系数。对不同展开长度下的展开系数和 GTO轨道指数已有表可查。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条