说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 矩阵微分方程
1)  matrix differential equation
矩阵微分方程
1.
Behaviors of solution of certain matrix differential equations;
某类矩阵微分方程解的特征
2.
On globally exponential convergence of a matrix differential equation;
一个矩阵微分方程的全局指数稳定性分析
3.
In this paper, we study the existence and uniform boundness of the solution for a class of nonlinear matrix differential equation with boundary perturbation.
研究某类具有边界摄动的非线性矩阵微分方程解的存在性和一致有界性 ,为伴有边界摄动的一阶非线性系统对角化提供理论依
2)  matrix differential equations
矩阵微分方程
1.
Equiboundedness of matrix differential equations;
矩阵微分方程的等度有界性(英文)
3)  Lyapunov matrix differential equation
Lyapunov矩阵微分方程
4)  first-order matrix linear differential equation
一阶矩阵线性微分方程
1.
This paper deals with the construction of the approximate solution of first-order matrix linear differential equations given by Y′=A(x)Y+B(x) and Y(0)=Y0,where x∈,and A(x),B(x)∈C4,using the quartic matrix spline(QMS).
文章给出了用四次矩阵样条构造形如Y′=A(x)Y+B(x),Y(0)=Y0,x∈[a,b],A(x)、B(x)∈C4[a,b]的一阶矩阵线性微分方程初值问题近似解的方法,研究了该方法的逼近误差并编制了实现该方法的一个算法,最后给出一些数值实例;比较结果表明,用四次矩阵样条所构造的近似解的逼近效果要比用三次矩阵样条所构造的近似解的逼近效果好。
5)  matrix differential equations with delays
时滞矩阵微分方程
1.
The problems about equistability for the matrix differential equations with delays have been discussed,and some criteria for equistability have been given.
在矩阵值范数定义的广义赋范空间上利用矩阵Liapunov泛函研究了时滞矩阵微分方程的等度稳定性,得出了若干新结果。
6)  vector matrix differential equation
矢量矩阵微分方程
补充资料:矩阵微分方程


矩阵微分方程
matrix differential equation

矩阵微分方程【n.七议创晚ren创阅娜‘扣;M盯p“,Hoe几.巾中epe皿明一a几‘Hoe ypa二eH加e」 一个方程,以其中出现的函数的矩阵及其导数为未知量. 考虑下列形式的线性矩阵微分方程: X,=A(t)X,reR,(l)其中A(t)为具有局部Lebesgue可积元的n xn维矩阵函数,设X(约是方程(l)的满足条件X(t。)=I的绝对连续的解,这里I是单位矩阵.这时,向量函数x(r)=X(t)h(h‘R”)是线性方程组 x‘=A(t)x(2)满足条件x(t。)二h的解.反之,如果h:,…,h。6R”,而x,(t)是方程组(2)满足条件x‘(t。)=h‘(i=1,…,n)的解,则以解x‘(t)为列的矩阵是矩阵微分方程(l)的解.此外,如果向量h:,…,h。是线性无关的,则对于所有的踌R,detX(t)笋0. 方程(l)是下列矩阵微分方程(产生于稳定性理论)的特殊情况: X‘=A(r)X一XB(t)+C(t).(3)方程(3)的具有初始条件X(t。)=X。的解由下列公式给出: X(t)二U(t,t。)X。V(t,t。)+ +丁。(:,:)e(,):(:,:)己:, 亡O其中U(:,。)是方程(1)的具有条件X(s,s)=I的解,而V(t,、)是满足条件X(:,:)=I的矩阵微分方程X‘=B(OX的解. 在各种应用问题(镇定理论、最优控制理论、控制系统的滤过理论等等)中,所谓Rieeati矩阵微分方程(例亩议Rlccati differen杭习闪业石。n) X‘=A(t)X一XB(t)+C(t)+XD(t)X起着重要作用.例如,Riccati矩阵方程 x,=一(尸(t)+又I)Tx一X(F(t)+几I)一 一I+XG(t)G丁(t)X(这里T代表转置)对又)0在直线R上具有有界解X(t),并且对所有的h6R”,作R和某个。>O,不等式hTX(t)h)。hrh成立,则由反馈律u=一GT(t)X(t)x/2封闭的可控系统 x’=F(t)x+G(t)u,x任R”,u任R用的每个解都满足不等式 }x(t)}簇M lx(s)Ie一’(‘一’),s(t,这里l·l是Euc石d范数,且M与s无关.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条