1) matrix differential
![点击朗读](/dictall/images/read.gif)
矩阵微分
1.
Construction of the position and orientation error model of navigation robots for femoral neck surgery using matrix differential
用矩阵微分建立股骨颈手术导航机器人位姿误差模型的方法
2) differentiation matrix
![点击朗读](/dictall/images/read.gif)
微分矩阵
1.
For the beam buckling problem,this paper presents the barycentric Lagrange interpolation collocation method to get the differentiation matrix of unknown function.
采用重心Lagrange插值多项式建立未知函数的微分矩阵,采用配点法将梁的控制方程表示为代数方程组。
3) differentiation of a matrix
![点击朗读](/dictall/images/read.gif)
矩阵的微分;矩阵的微分
4) matrix differential method
![点击朗读](/dictall/images/read.gif)
矩阵微分法
1.
A new algorithm for MIMO random test control –Matrix differential method is put forward.
![点击朗读](/dictall/images/read.gif)
介绍了多维随机振动试验的应用必要性和前景,就多维随机振动试验控制算法问题进行了讨论,提出了一种新的多维振动控制算法——矩阵微分法,在国内现有的公开发表的文献中该方法首次实现了对自功率谱密度、互谱密度、互谱相位和相干系数的同时控制,用双台振动试验模型进行了数值仿真,证明了该方法的有效性。
5) matrix differentials
![点击朗读](/dictall/images/read.gif)
矩阵的微分
1.
This paper first presents the characteristic function of matrix Beta distribution and then obtains the first two moments through matrix differentials.
首先给出了矩阵Beta分布的特征函数,然后利用矩阵的微分得到了矩阵Beta分布的前二阶
6) spectral differentiation matrix
![点击朗读](/dictall/images/read.gif)
谱微分矩阵
补充资料:矩阵微分方程
矩阵微分方程
matrix differential equation
矩阵微分方程【n.七议创晚ren创阅娜‘扣;M盯p“,Hoe几.巾中epe皿明一a几‘Hoe ypa二eH加e」 一个方程,以其中出现的函数的矩阵及其导数为未知量. 考虑下列形式的线性矩阵微分方程: X,=A(t)X,reR,(l)其中A(t)为具有局部Lebesgue可积元的n xn维矩阵函数,设X(约是方程(l)的满足条件X(t。)=I的绝对连续的解,这里I是单位矩阵.这时,向量函数x(r)=X(t)h(h‘R”)是线性方程组 x‘=A(t)x(2)满足条件x(t。)二h的解.反之,如果h:,…,h。6R”,而x,(t)是方程组(2)满足条件x‘(t。)=h‘(i=1,…,n)的解,则以解x‘(t)为列的矩阵是矩阵微分方程(l)的解.此外,如果向量h:,…,h。是线性无关的,则对于所有的踌R,detX(t)笋0. 方程(l)是下列矩阵微分方程(产生于稳定性理论)的特殊情况: X‘=A(r)X一XB(t)+C(t).(3)方程(3)的具有初始条件X(t。)=X。的解由下列公式给出: X(t)二U(t,t。)X。V(t,t。)+ +丁。(:,:)e(,):(:,:)己:, 亡O其中U(:,。)是方程(1)的具有条件X(s,s)=I的解,而V(t,、)是满足条件X(:,:)=I的矩阵微分方程X‘=B(OX的解. 在各种应用问题(镇定理论、最优控制理论、控制系统的滤过理论等等)中,所谓Rieeati矩阵微分方程(例亩议Rlccati differen杭习闪业石。n) X‘=A(t)X一XB(t)+C(t)+XD(t)X起着重要作用.例如,Riccati矩阵方程 x,=一(尸(t)+又I)Tx一X(F(t)+几I)一 一I+XG(t)G丁(t)X(这里T代表转置)对又)0在直线R上具有有界解X(t),并且对所有的h6R”,作R和某个。>O,不等式hTX(t)h)。hrh成立,则由反馈律u=一GT(t)X(t)x/2封闭的可控系统 x’=F(t)x+G(t)u,x任R”,u任R用的每个解都满足不等式 }x(t)}簇M lx(s)Ie一’(‘一’),s(t,这里l·l是Euc石d范数,且M与s无关.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条