1) transfinite vectored rational interpolating function
超限向量值有理插值函数
1.
In this paper, a concept of the bivariate transfinite vectored rational interpolating function is presented.
文章首先提出超限向量值有理插值函数的概念,再据此给出了一种算法来构造各种形状的旋转曲面(含球面),其准线是(分段)Bézier曲线或其他平面连续曲线。
2) vector valued rational interpolant
向量值有理插值
1.
A recursive algorithm of bivariate vector valued rational interpolants;
二元向量值有理插值的一种递推算法
3) rational transfinite interpolation
有理超限插值
1.
In this paper, based on the rational transfinite interpolation, a set of global approximation method namely rational macro-element method was proposed.
基于有理超限插值,提出了一种在求解域边界布点的全域求解数值方法——有理宏单元法。
4) rational function interpolation
有理函数插值
1.
An incremental elasto-plastic analysis based on rational function interpolation;
基于有理函数插值的增量弹塑性分析
2.
This paper presents a rational function interpolation scheme of polygonal elements based on highly irregular grids.
借鉴自然邻点插值法,提出了基于高度不规则网格多边形单元的有理函数插值格式—多边形有理函数插值。
3.
The inequality of error estimating is given for rational function interpolation.
对多边形上的有理函数插值的误差进行了分析,利用有理函数插值形函数的性质和二元函数的Taylor展开式,证明了有理函数插值的误差估计不等式。
5) Lagrange interpolation rational functions
Lagrange插值有理函数
6) rational interpolation function
有理插值函数
1.
By introducing more parameters,a method constructing rational interpolation functions by use of relationship of polynomials\' equality was given.
通过引入多个参数,利用多项式相等给出了一个构造有理插值函数的方法,该方法简便、灵活,便于实际应用,可根据需要构造所需要类型的有理插值函数。
补充资料:力学量的可能值和期待值
在量子力学中,力学量F用作用于波函数上的算符弲表示。在数学上,对于一个算符,满足
的函数 ui(r)称为弲的本征函数,式中Fi是与r无关的数,称为本征值。如果ui(r)描写微观粒子的状态,则它必须满足单值、连续和有限的标准条件。在这种限制之下,上式中的本征值可以取一系列分立值,或取一定范围内的连续数值。
在测量力学量F时,观察到的只能是它的本征值。若一个力学量的本征值具有分立谱,我们说这个力学量是量子化的。
量子力学中假定力学量的全部本征函数组成一个完全系;这意思是说:描写体系的任一状态的波函数ψ都可以用力学量的本征函数ui展开:
在ψ和ui都是归一化的情况下,上式中的展开系数сi具有如下的物理意义:在ψ态中测量力学量时,得到结果为Fi的几率是|сi|2。
因此,若微观粒子的定态波函数是某力学量算符的本征函数ui(r),则在这一状态中,力学量F取确定值Fi。
在ψ态中对力学量进行多次测量,把所得结果加以平均,就得出力学量在ψ态中的期待值,以〈F〉表示:
上式称为力学量的期待值公式。如果ψ不是归一化的,那么期待值公式应写为
的函数 ui(r)称为弲的本征函数,式中Fi是与r无关的数,称为本征值。如果ui(r)描写微观粒子的状态,则它必须满足单值、连续和有限的标准条件。在这种限制之下,上式中的本征值可以取一系列分立值,或取一定范围内的连续数值。
在测量力学量F时,观察到的只能是它的本征值。若一个力学量的本征值具有分立谱,我们说这个力学量是量子化的。
量子力学中假定力学量的全部本征函数组成一个完全系;这意思是说:描写体系的任一状态的波函数ψ都可以用力学量的本征函数ui展开:
在ψ和ui都是归一化的情况下,上式中的展开系数сi具有如下的物理意义:在ψ态中测量力学量时,得到结果为Fi的几率是|сi|2。
因此,若微观粒子的定态波函数是某力学量算符的本征函数ui(r),则在这一状态中,力学量F取确定值Fi。
在ψ态中对力学量进行多次测量,把所得结果加以平均,就得出力学量在ψ态中的期待值,以〈F〉表示:
上式称为力学量的期待值公式。如果ψ不是归一化的,那么期待值公式应写为
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条