说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 正规吸引域
1)  domains of normal attraction
正规吸引域
1.
In this paper, we use the symmetric group of μ to characterize the operators B, and show some relationships between the domains of normal attraction of two operator semi-stable distributions.
基于算子半稳定分布的概念及满的算子半稳定分布μ的特征,利用μ的对称群刻画出其中的算子B,并给出两个算子半稳定分布的正规吸引域的关系。
2)  attraction domain
吸引域
1.
Optimization for Attraction Domain of Hopfield Associative Memory with Genetic Algorithm;
基于遗传算法的Hopfield联想记忆吸引域的优化
2.
Some e stimation results are obtained about the attraction domain of equilibrium sta tes and suffic ient conditions for asympotic stability of large-scale general neural netw orks with time-varying delays.
使用不等式技巧和非负矩阵性质 ,讨论了含可变时延的大规模通有神经网络动力系统的渐近行为 ,建立了估计该系统平衡态吸引域的方法 。
3)  domain of attraction
吸引域
1.
Linear matrix inequality approach to enlarging domain of attraction for systems subject to actuator saturation and uncertainties;
扩大饱和不确定系统吸引域的线性矩阵不等式方法
2.
The global domain of attraction for a kind of MKdV equations;
用胞映射方法讨论一类MKdV方程全局吸引域
3.
An improved method for estimating the domain of attraction for linear systems subject to actuator saturation;
一种改进的饱和线性系统吸引域估计算法
4)  attraction region
吸引域
1.
Estimating attraction regions of robotic grasp with weighting-norm;
利用加权范数估计机器人抓取系统的吸引域
2.
Utilizing the method of experimental mathematics, the authors obtain the following conclusion: (1) The Juh a sets of above methods for f(z) = zα (zβ-1) has β rotational symmetry and its center is the origin; (2) The multiple root attraction region of these kinds of Julia sets are sensitive to a; (3) There is not simple root attraction region in the relax method.
采用实验数学方法,作者得出如下结论:(1)函数f(z)=zα(zβ-1) 的三种牛顿变换Julia集的中心为原点目具有β倍的旋转对称性; (2)三种牛顿变换Julia集的重根吸引域对α具有敏感的依赖性;(3)由于的零点是松弛牛顿变换的中性或斥性不动点,故松弛牛顿变换的Julia集中不存在单根吸引域;(4)由于∞点不是重根牛顿变换的不动点,故重根牛顿变换的Julia集中多为重根和单根吸引域;(5)重根牛顿法受计算误差影响最小,松弛牛顿法次之, 标准牛顿法最大。
3.
This paper proposes a new method to determine the attraction region of the high-dimension system by using the intersection of the unstable limit cycles among system state variables near the subcritical Hopf bifurcation point.
提出了一种在亚临界霍普夫分岔点附近,利用系统状态变量之间的不稳定极限环的交集确定高维系统吸引域的方法。
5)  basin of attraction
吸引域
1.
Comparing with the control by pole placement method, a bigger stability range (or basin of attraction) and stronger robustness can be provid.
针对体操机器人这种欠驱动机械系统设计了滑模变结构控制律,变结构控制中采用了一种改进的指数趋近律·仿真结果表明对线性化模型所设计的变结构控制器应用在非线性系统中,仍能使机器人系统实现稳定·与极点配置方法相比较,采用滑模变结构控制方法设计的平衡控制器可使机器人系统具有更大的稳定范围(吸引域)和更强的鲁棒性·改进的指数趋近律可有效地降低变结构控制中所产生的抖动,并使系统迅速达到平衡稳定状态
2.
Furthermore, the basin of attraction of each desired memory pattern is distributed reasonably (in the Hamming distance sense).
提出一种根据联想记忆点设计基于约束区域的 BSB(Brain- State- in- a- Box)神经网络模型 ,它保证了渐近稳定的平衡点集与样本点集相同 ,不渐近稳定的平衡点恰为实际的拒识状态 ,并且吸引域分布合理 ,从而将 BSB完善为理想的联想记忆器 。
3.
An optimized learning algorithm of non-symmetrical neural network for associative memory is proposed, which ensures to store each training pattern with a basin of attraction which enables the neural network have wrong associative fault-tolerance.
该算法能保证训练模式成为稳定吸引子并具有一定的吸引域,从而使网络具有较强的联想容错能力。
6)  basins of attraction
吸引域
1.
Focuses ondiscrete Hopfield neural network structured by pattern optimum seeking method ,on the basis of which the attractors ,the basins of attraction and the function of associative memory are analyzed.
从理论上推导采用样本优选规则构造的离散Hopfield网络的吸引子,发现该网络的存储容量达到N,并推导这些吸引子的吸引域,探讨网络的联想记忆功能。
2.
Secondly, in order to describe dynamical behavior accurately, We analyse the basins of attraction of CA by the G-density and In-degree; Finally, We bring synchronization phenomena of 90 Cellular Automata.
首先,简要介绍了细胞自动机的基本原理和四种分类,并根据λ参数对四种类型的CA进行了定量分析,据此确定以最大混沌行为链C规则细胞自动机作为本文的研究和应用对象;其次,为精确地描述混沌链C规则CA的动力学行为,本文通过G密度和入度对链C规则吸引域的收敛程度进行了分析;对一维二态三邻居90规则的同步规律进行了分析和验证,给出在变长度下演化同步过程模拟。
补充资料:超导电性的局域和非局域理论(localizedandnon-localizedtheoriesofsuperconductivity)
超导电性的局域和非局域理论(localizedandnon-localizedtheoriesofsuperconductivity)

伦敦第二个方程(见“伦敦规范”)表明,在伦敦理论中实际上假定了js(r)是正比于同一位置r的矢势A(r),而与其他位置的A无牵连;换言之,局域的A(r)可确定该局域的js(r),反之亦然,即理论具有局域性,所以伦敦理论是一种超导电性的局域理论。若r周围r'位置的A(r')与j(r)有牵连而影响j(r)的改变,则A(r)就为非局域性质的。由于`\nabla\timesbb{A}=\mu_0bb{H}`,所以也可以说磁场强度H是非局域性的。为此,超导电性需由非局域性理论来描绘,称超导电性的非局域理论。皮帕德非局域理论就是典型的超导电性非局域唯象理论。

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条