1) Rolle mean value theorem
罗尔中值定理
1.
On the basis of these theories,Rolle mean value theorem,Lagrange mean value theorem and Cauchy mean value theorem are proved by constructing nested interval.
在此基础上通过构造区间套依次证明了罗尔中值定理、拉格朗日中值定理和柯西中值定理。
2) Rolle theorem
罗尔中值定理
1.
Second,the inverse proposition of Rolle theorem is studied when derived function has several zero points.
对于常见的三个微分中值定理(罗尔中值定理,拉格朗日中值定理,柯西中值定理)的逆命题何时成立的问题进行了讨论。
3) New Proof of the Method of Rolle Intermediate Value Theorem
罗尔中值定理新证
5) Rolle theorem
罗尔定理
1.
The Construction of Auxiliary Function in the Application of Rolle Theorem;
罗尔定理应用中辅助函数的构造
2.
Through some examples the author enumerates three kinds of problems testifying the existence of formula root and further proves it by using Zero-Point Theorem, Rolle Theorem , Lagrange Middle Theorem , reduction ad absurdum proof,etc.
通过例题列举了利用零点定理、罗尔定理、拉格朗日中值定理,反证法等证明方程根存在的三类问题。
3.
Based on Cauchy theorem and Rolle theorem, applied structure assist function method has proved the fundamental theorem.
以柯西定理、罗尔定理为基础,应用构造辅助函数法对带有Lagrange余项的泰勒公式进行证明。
6) mean value theorem
中值定理
1.
Popularization of the different Thial mean value theoreme;
微分中值定理的一种推广
2.
On the converse proposition of higher order differential mean value theorem;
关于高阶微分中值定理的逆命题
3.
Asymptotic property of median for the mean value theorems;
中值定理“中间值”的渐近性
补充资料:柯西中值定理
如果函数f(x)及f(x)满足:
(1)在闭区间[a,b]上连续;
(2)在开区间(a,b)内可导;
(3)对任一x∈(a,b),f'(x)≠0,
那么在(a,b)内至少有一点ζ,使等式
[f(b)-f(a)]/[f(b)-f(a)]=f'(ζ)/f'(ζ)成立。
柯西简洁而严格地证明了微积分学基本定理即牛顿-莱布尼茨公式。他利用定积分严格证明了带余项的泰勒公式,还用微分与积分中值定理表示曲边梯形的面积,推导了平面曲线之间图形的面积、曲面面积和立体体积的公式。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条