1.
The Analytic Behaviour of Intermediat Point ξ in the Mean Value Theorem for Differentials;
微分中值定理中“中值点”ξ的分析性质
2.
Discussion on Lagrange Central Value Theorem and Application;
Lagrange中值定理及其应用
3.
A Use of Lagrange Middle-Value Theorem;
Lagrange中值定理的一个应用
4.
A Tentative Discussion on Lagrange Mean Value Theorem and its Application;
浅谈Lagrange中值定理及应用
5.
Mean - Value theorem for about Lebesgue integral;
关于Lebesgue积分的中值定理
6.
Another Proof of Lagrange Mean Value Theorem;
Lagrange中值定理的一个证明
7.
General Form of Lagrange Mean Value Theorem
Lagrange中值定理的一般形式
8.
The mid-value theorems is the basic theorems in the calculus.
微分中值定理是微分学中的基本定理。
9.
A New Proof of Cauchy Mean-value Theorem and Two Applications of Mean-value Theorem;
柯西中值定理的新证明及中值定理的两个应用
10.
STRONG LAW OF THE MEAN FOR MEASURE-UNITYOF THE LAWS OF THE MEAN FOR CALCULUS;
测度强中值定理──微积分中值定理的统一
11.
ASYMPTOTIC PROPERTIES OF "THE MEAN VALUE ξ" IN CAUCHY MEAN VALUE THEOREM
关于柯西中值定理“中值ξ”的渐近性
12.
Discussion on Differential Mean Value Theorem "mean value point";
关于微分中值定理“中值点”的讨论
13.
On the Asymptotic State of the Mean Value for Cauchy Mean Value Theorem;
关于Canchy中值定理的中值的变化趋势
14.
On Asymptotic Approximation of the Second Mean Value Theorem of Integrals;
再论积分第二中值定理中值的渐近性
15.
Asymptotic Properties for the "Middle Point" of the Second Mean Value Theorems of Integral
积分第二中值定理“中间值”的渐近性
16.
Rolle's theorem is a special case of the mean value theorem.
罗尔定理是中值定理的一种特殊形式。
17.
The Proof of the Generalized Cauchy Mean-value Theorem with Method of Interpolation
利用插值法证明推广的柯西中值定理
18.
"Value Point's" Quantitative Characterization of the Asymptotic about Mean Value Theorem for the Binary Function
二元函数中值定理“中值点”渐近性的定量刻画