1) homology epimorphism
同调满态
1.
This paper defines homology monomorphism,homology epimorphism,homology regular morphism in the category of topological spaces with point by using homology functor.
利用同调函子,在点标拓扑空间范畴中定义了同调单态、同调满态、同调正则态射等概念。
2) homomorphism
[英][,həumə'mɔ:fizəm] [美][,homə'mɔrfɪzəm]
同态满射
1.
This article proves that in the homomorphism of G onto ■,the inverse image of a maximal normal subgroup in ■ is also a maximal normal subgroup in G.
本文得到了在同态满射下,极大正规子群的逆象也是极大正规子群,并给出了极大正规子群的象也是极大正规子群的一些等价条件。
2.
This article proved that in the homomorphism of G onto H, the inverse image of a maximal ideal in H is also a maximal ideal in G.
得到了同态满射下,最大理想的逆象是最大理想,并给出了最大理想的象也是最大理想的一些等价条件。
3) surjective R-homomorphism
满R-同态
4) monomorphism (epimorphism)
单(满)同态
5) homotopy epimorphisms
同伦满态
1.
Using homotopy pushouts to characterize homotopy epimorphisms, we have the result as follows: If f: X→ Y is a homotopy epimorphism, H is a normal subgroup of π1Y, then the lifting f: X(f#-l(H)) → Y(H) is also a homotopy epimorphism.
本文在点标道路连通CW空间的同伦范畴中,利用同伦推出示性了同伦满态,得出了若f:X-Y是同伦满态,则对π1Y的任一正规子群H,升腾映射f:X(f-1#(H))→■(H)也是同伦满态。
6) surjective homomorphism
满射同态
补充资料:Александров-(?)ech同调与上同调
Александров-(?)ech同调与上同调
Aleksandrov. tech homology and cohomology
人皿拍国卿甲.为陀h同调与上同调[Alek劝Indmv_乙比hh曲d馆y明do团.助d嗯y;AnO..口脚.一月exar傲0-一“一“。nII.],谱回娜与丰回娜(s pectral hom“-logy and cohomofogy) 满足所有Steen找闷一Eilenberg公理(Steenrod一Ei-lenberg axfoms)(正合性公理可能除外)以及某个连续性条件的同调论与上同调论.A叱碱冠环叮”.一亡ech回娜群(模)(川e协androv一亡e比homolo留歹ou声(m记过es))H,(X,A;G)([l],[2])定义为空间X的所有开覆盖:上的逆向极限lim_H”(“,“’;G);这里“不仅代表覆盖,也代表它的网,丫是戊的子复形,它是“限制在闭集A上的网(见集合族的网(nerve of a family ofsets)).在同伦的意义下,由P到:的包含映射所定义的单纯投射(口,厂)~(“,“‘)的存在性,确保可以过渡到极限.脉K闭J月为。一亡ech上同调群(月eksandrov一亡echcohomofo留groups)H”(X,丸G)定义为正向极限hm_H”(“,:‘;G).同调群满足除正合公理外的所有steenrod一Eilenberg公理.上同调群满足所有的公理,部分地由于这个原因,上同调群常常更有用.如果G是紧群或域,则正合公理对紧统范畴上的同调群也成立.另外,A叱班么凡叮幻B一亡ech同调群和上同调群有连续性:当X=hm_戈时,其同调(上同调)群等于紧统龙的同调(上同调)群的相应极限.人朋耳乏城叮刃。一亡ech理论是满足stcenrod一Eilenberg公理(除上面提到的那个外)和这种连续性条件的唯一理论.在仿紧空间范畴上,常用到Eilenberg一Madave空间的映射刻画上同调;尽管该上同调等价于层论(s heaf theory)中定义的上同调.上同调也可以用某上链复形的上同调来定义,这使得有可能用上链的层进行运算.应用于同调的类似的思想,包含在N.Steenrod,A.Borel及其他人首创的同调论中,它满足包括正合性公理在内的所有公理(但连续性除外).A朋袱么耳叮力B一亡ech同调及上同调,包括经上述修改的,被应用于连续映射理论中的同调问题,变换群理论(与商空间的联系),广义流形理论(特别是各种对偶关系),解析空间论(例如,定义同调的基本类)及同调维数理论等等.【补注】也常把A服班卫瑞叮”B一亡ech上同调称为亡ech上同调(亡ech cohomofogy).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条