1) multi-parameters rational function matrix
多元有理函数矩阵(RFM)
2) rational function matrix in multi-parameters
多元有理函数矩阵
3) the field of rational functions in multi-parameters
多元有理函数域
1.
In field of circuit theory, the conclusion about structure properties of electrical network based on the field of real number is determined by both network structure and the value of element, but structure properties based on the field of rational functions in multi-parameters is only determined by network structure and not by the value of elements (because these elements do not have values).
在电路理论领域内,关于电网络结构性质的研究都是基于实数域上的(描述系统的状态方程系数矩阵都在实数域上),得到的有关网络性质的结论由网络的结构和网络中元件的取值共同决定,但是基于多元有理函数域F(z)上的研究方法所获得的网络的性质只由网络的结构决定而与网络中元件的取值无关(因为这些元件都没有取值),只需观察网络的结构即可知道网络是否能控能观,方法直观简便,特别适合电网络的分析与综合。
4) Multiple Rational Function System
多元有理函数
1.
The theory of Multiple Rational Function System takes the approach of system theory to study the structure properties of electrical network and takes the method of state space described to get the state equations of electrical networks and does some research such as controllability and observability.
多元有理函数(F(z))系统理论采用系统理论的方法研究电网络的结构性质,借助于状态空间描述的方法得到电网络的状态方程组,并对电网络结构的能控能观性等方面进行研究。
5) irrational transfer matrices
非有理传递函数矩阵
6) rational function matrices
有理函数阵
补充资料:有理函数
有理函数
rational Auction
·有理函数[.‘.司加“甫佣;p哪on幼研朋切.目耳职] l)有理函数是函数w=R(z),其中R(z)是公的有理表达式,也就是说,这个表达式是从自变量z和某有限个(实或复)数,通过有限次算术运算得到的.有理函数可以(不唯一地)写成 刀了,、=里(丝州 Q(么)的形式,其中p,Q为多项式,且Q(:)毕0.这些多项式的系数称为有理函数的系数(以冷场汤改由of血拍石。业lfiJ曰=tj on).函数P/Q称为不可约的,如果尸和Q没有公共零点(即,p和Q为互素的多项式).任意有理函数都可写成不可约分式R(:)=尸(习/Q(习;若尸和Q的次数分别为m和n,那么R(:)的次数可以认为是对(。,的或是数 万=max{m,n}· 当n‘O时,(m,n)次有理函数,即多项式(Pol班lo面al),也称为整有理函数(日吐j民花石“阁丘田c-tion).否则,称为分式有理函数(rh犯tional一m石。nalfL川e- tioll).恒为。的有理函数R(劝二O的次数是不定 义的.如果爪
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条