1) rational complex functional matrix
有理复函数阵
2) rational function matrices
有理函数阵
3) multi-parameters rational function matrix
多元有理函数矩阵(RFM)
4) irrational transfer matrices
非有理传递函数矩阵
5) rational function matrix in multi-parameters
多元有理函数矩阵
6) rational function
有理函数
1.
On the partial fraction expansion of rational functions;
关于有理函数的部分分式展开
2.
Application of derivative operation in rational function integral;
导数运算在有理函数积分中的应用
3.
Density and approximation rate of Müntz rational functions on infinite intervals.;
无界区间上Müntz有理函数的稠密性和逼近速度
补充资料:有理数
有理数 rational number 整数和分数的统称。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零3种数。由于任何一个整数或分数都可以化为十进循环小数,反之,每一个十进循环小数也能化为整数或分数,因此,有理数也可以定义为十进循环小数。有理数集是整数集的扩张。在有理数集内,加法、减法、乘法、除法(除数不为零)4种运算通行无阻。有理数的大小顺序的规定:如果a-b是正有理数,就称a大于b或b小于a,记作a>b或b<a。任何两个不相等的有理数都可以比较大小。有理数集与整数集的一个重要区别是,有理数集是稠密的,而整数集不是稠密的。将有理数依大小顺序排定后,任何两个有理数之间必定还存在其他的有理数,这就是稠密性,整数集没有这一特性,因为两个相邻的整数之间就没有其他的整数了。 |
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条