1) exact shape function
精确形函数
1.
Hence, the shape functions resulted are named the exact shape functions.
单元插值形函数是由梁的自由振动方程导出的,称为精确形函数。
2) exact penalty function
精确罚函数
1.
Several Notes on the Exact Penalty Function Method for Nonlinear Programming;
非线性规划精确罚函数法的几点注释
2.
On minimizing problems subject to equality constraints,we give a new exact penalty function.
本文给出了一类等式约束优化的简单光滑精确罚函数,该精确罚函数有别于传统罚函数,它是光滑的和简单的,即在该精确罚函数表达式中,不含有目标函数的梯度。
3.
In this paper, we study the asymptotic behavior of methods based on a family of penalty functions that approximate asymptotically the usual exact penalty function for the differentiable nonlinear programming problem.
本文对可微非线性规划问题提出了一个渐近算法,它是基于一类逼近l1精确罚函数的罚函数而提出的,我们证明了算法所得的极小点列的聚点均为原问题的最优解,并在Mangasarian-Fromovitz约束条件下,证明了有限次迭代之后,所有迭代均为可行的,即迭代所得的极小点为可行点。
4) exact power function
精确势函数
5) accuracy function
精确度函数
6) exact weight function
精确权函数
1.
A method for correction to instrument s response distortion based on an exact weight function with a calculated example;
基于精确权函数的仪器响应失真校正方法与算例
补充资料:带形法(解析函数)
带形法(解析函数)
strip method (analytic functions)
带形法(解析函数)1 striP Inetl瓦Kl(田司ytic肠.‘石叨s);no月oc MeTO月] 复变函数论中的一种方法,其基础是联系某个特殊曲线族曲线的长度与由该族曲线填充而成的区域的面积的一些不等式.该方法基于G心zsch的一些引理(fl」).其中之一叙述如下. 考虑边长为A和B的一个矩形,它包含有限个不相重叠的单连通区域S*,k“1,一,n,每个区域都具有Jordan边界与长度为A的两条边均交成线段而不退缩为点(区域S*形成从长度为A的一边到另一边的带状域).若S*被共形映射成边长为a*与b*的矩形使上述的线段变成长度为“*的边,则 咨a,,A 、二二兰~丈二立 k瞥1 bkB’等号仅当S*,k二l,…,n,是边长为a*和B的矩形且满足艺笑_、“*=A时才成立. 另一个引理是Gr‘tz劝原理(Gr6tzseh PnnciPle).这两个G由tzsch引理对无限多个子区域的情形也成立. 带形法首先被H .Gr议zsch(【11)用作单叶共形映射与拟共形映射理论中的一种方法,他应用该方法系统研究并解决了定义在有限连通与无限连通区域中的单叶函数的大量极值问题(见【31;关于别的应用可见【21). 这一方法也成为极值度量法的基础(见极值度最法(extrema】叱tr记,rnethod ofthe).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条