1) n Dimension Euclid Space
n维Euclid空间
1.
Several Important Concepts and Theorems for the n Dimension Euclid Space;
几个n维Euclid空间概念与定理
2) n dimensional euclid space
维Euclid空间
3) Euclid space
Euclid空间
1.
By applying elementary transformation,this paper obtains a new method to search for a normal orthogonal basis in Euclid space, it also gives a procedure by which the fewer third elementary transformations are enough to realize this method.
导出用初等变换法求Euclid空间的标准正交基的方法,并进一步获得了只需进行较少次数的第三种类型的初等变换就能实现这一方法的结果。
4) n-dimensional space
n维空间
1.
The paper submit a indirect and universal method to solving variation problem in N-dimensional space,by way of transforming variation problem to eigenvalue problem of partial differential equation.
令泛函变分为零时 ,N维空间变分问题就转化为高阶偏微分方程本征值问题 ,据此提出了N维空间变分问题的间接求解方法 ,该方法具有一定的普遍性 ,并给出有代表性的实
2.
In this paper,the almost periodic functions were generalized to n-dimensional space,and the properties of the functions were considered.
论文首先将概周期函数定义推广到n维空间上,并考察该函数在n维空间上的性质。
3.
In addition,the result is generalized to the n-dimensional space.
文章以推广多项式插值为目的,利用Lagrange插值基函数,采用初等方法给出了三维空间中的多项式插值及其误差公式,然后将其结果推广到n维空间的情形,最后给出了一个数值例子。
5) n-dimentional space
n维空间
1.
In En (n≥4) , when two mutually perpendicular lines are in parallel with two groups of super projection planes respectively, the lines characters on the crossing planes of the super projection planes are discussed and the projection theorem of the right angle in the n-dimentional space is also suggested.
对E~n中(n≥4),互相垂直的两直线,当分别平行于两组不同的投影超平面时,它们在这些投影超平面的交平面上的投影特性进行了探讨,给出了适用于n维空间的直角投影定理。
6) N-dimensionality linear space
N维线性空间
1.
An integer N-dimensionality linear space is employed to express possible states of virtual enterprises.
采用非连续、离散型N维线性空间的状态分布表示虚拟企业体系任意的可能状态。
补充资料:Euclid空间
Euclid空间
Eudidean space
Dd记空I’ed【Eu山d.口sPaCe;E.K月.八0.0 npoeTpaue-T.o} 一个空间,它的性质由D创叼几何学(EuClid巴n遥笋〕能甸)公理来描述.在更一般的意义下,Euc加空间是有限维实向t空间(狱tor sPace)R”,具有内积(m川改pIDduCt)(x,y),x,y任R”,在适当选取的(I)乏-cart巴)坐标系 x=你:,…,戈)和y=妙l,,二,孔)中,内积由下列公式给出: (x,力一艺xi戈. .=l E.八.Ca口oN祀HlleB撰【补注】由于把n”2的情况称为Euclid平面,有时也把n=3的情况相应地称为E‘M空间,例如,见阵l1.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条