1) linear fractional programming
线性分式规划
1.
An interactive linear fractional programming algorithm is presented to solve multiple attribute decision problems based on the assumption that the decision-maker has a linear utility function.
基于决策者的线性效用函数提出了一种求解多属性决策问题的交互线性分式规划算法。
2.
In this paper, the authors present an algorithm to handle linear fractional programming in the general form directly, which need not transform the constraints of the problem into the stan dard form.
本文提出一个直接处理一般形式线性分式规划的算法而不需要把问题的约束条件转化为标准形式。
3.
In this paper, a numerical example of linear fractional programming (LFP) has beenconstructed in which a finite sequence of degenerate bases obtained by the LFP’s primalsimplex algorithm in referenes [1] and [2] may yield basis cycling and hence no opti-mum solution could be got.
本文用一个数值例子说明用[1] 和[2] 中的原始单纯形算法求解退化的线性分式规划(LFP) 可能会出现基循环,从而得不到最优解。
2) nonlinear fractional programming
非线性分式规划
1.
In this paper,a class of new generalized invexity concept is defined on basis of[1],and then Mond-Weir duality theorems with the weakduality theorems,strong duality theorem and converse duality theorem are proved under this new generalized invexity condition for a classof nonconvex nonlinear fractional programming.
本文对不变凸函数概念推广,引入了一类更为广泛的广义不变凸性概念,并证明了在该类新广义不变凸性条件下,一类非凸非线性分式规划的Mond-Weir对偶的弱对偶、强对偶和逆对偶定理。
2.
And then some optimal sufficient conditions are proved under these new generalized invexity sufficient conditions for a class of nonconvex nonlinear fractional programming.
引入了广义不变凸、广义不变伪凸和广义不变拟凸等几类新的广义不变凸函数概念,使凸函数得到更广泛的推广,并由此进一步给出并证明了在这些新广义不变凸性条件下,一类非凸非线性分式规划的一些最优性充分条件。
3) the parametric linear fractional programming problems
分式线性规划
4) linear fractional programming in general form
一般形式线性分式规划
1.
The structure and search procedure of solution sets of linear fractional programming in general form;
一般形式线性分式规划解集的结构与求法
5) multiple objective linear fractional programming
多目标线性分式规划
1.
In the production practice,decision-makers often encounter the problem of the multiple objective linear fractional programming,but the barrier to calculation is involved in most of its existing solutions.
生产实践中,决策者经常面对多目标线性分式规划问题,但其已有解法大都存在计算障碍。
6) bilevel linear fractional programming
双层线性分式规划
1.
Based on the nature of bilevel linear fractional programming,the model of bilevel linear fractional programming of which upper lever is without constration is discussed in this paper.
基于双层线性分式规划的性质,讨论了上层不带约束的双层线性分式规划模型,给出了求其所有顶点的算法。
补充资料:分式线性映射
分式线性映射
fractional -linear mapping
【补注】关于AutB”的出色的参考义献有[A IJ.分双线性映射,也称为M6bius孪攀(附bi‘哪forma-tinn劝分式线性映射[加改抽旧.一血。r“.价娜甩;八po6,。一二。。e‘-110e“T06pa‘e“,e],分式攀性孪珍(frac‘lonal一加已灯肋m几n刃日lion) 用分式线性函数来实现的复空间C”~C”的映射(见分式线性函数(n习ctional刁in浅汀允nc加n)). 在复平面C’=C的情形下,这是形如 az+b “一w一L回一嚣篇~(‘)的非常数映射,其中ad一bc务0;通常采用么模正规化(朋i以对田ar non刀al达ltjon)诫一瓦=1.任一分式线性映射可通过补充定义叨~a/c及一d/c~的而成为扩充复平面C到自身的一一映射.最简单的分式线性映射是线性映射艺~w=汤+石,当c二O时便得到这种映射.所有非线性的分式线性映射均可表为两个线性映射同映射乌::~w二1八的复合.分式线性映射乌的性质可以在R翻改l.u.,球面(Rlen切山叮sPhe犯)上描述,因若采用球极平面射影,它对应于绕过点士16C的象点的直径作180。旋转. 特有性质,分式线性映射将〔一一共形地映射为自身.圆性质(c加le property):在分式线性映射下,C中任一圆(即C中圆或添上点田的直线)变成〔中的圆.两对称点的比的不变性:关于C中任一圆对称的一对点:,z’,在分式线性映射下变为关于该圆的象对称的一对点w,矿.〔中四点的交比关于分式线性映射不变,即若该映射把点亡},岛,乌,氛分别变成点心,,几,乌,仇,则 七、一心t乱一心,C、一〔l么一C! 、3、1·、4、l=、3、l二纽一一兰上了2) 之3一屯:’氛一七:C3一屯:一弘一乌-对于任意给定的〔中两两不同的三点组着、,着2,着3和C,,CZ,乌,存在一个唯一的分式线性映射,分别把氛变成氛,k“l,2,3.这一分式线性映射可从方程(2)用:和、分别代换氛和众后求出·群性辱(gro叩Property):全体分式线性映射的集合关于复合(L:几)(z)=L、仇伺)构成非交换群,其单位元素为E(z)”2.万有性质(un-Iven曰五ty pmperty):C的任一共形自同构是分式线性映射,因此所有分式线性映射的群与〔的所有共形自同构的群A币、C一致, 单位圆盘B={:‘C:}:}
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条