1) elliptic partial differential equation
椭圆型偏微分方程
1.
Inverse potential problem of two-dimensional elliptic partial differential equations;
二维椭圆型偏微分方程的反势问题
2.
The algorithm for a class of optimal control problem where the state variables are the weak solution of an elliptic partial differential equation is studied.
研究一类最优控制问题的求解方法,其状态变量是某一种椭圆型偏微分方程的弱解。
3.
The inverse problem of elliptic partial differential equation in the permeability field is discussed,whose permeability coefficient is nearly uniform.
研究了在渗透系数相差不大的渗流场中椭圆型偏微分方程的系数反问题 ,通过把CT技术中的Radon变换推广到渗流力学中 ,给出了渗透系数的计算方法和实
2) elliptic partial differential equations
椭圆型偏微分方程
1.
This paper gives a way to solve the inverse source problem of elliptic partial differential equations in two-dimensional cases with the help of Radon transform.
将Radon变换及其反投影变换原理应用于二维椭圆型微分方程反源问题的求解 ,从另一个角度解决了椭圆型偏微分方程的反源问
3) strongly elliptical difference equations
强椭圆型偏微分方程组
4) second order elliptic partial differential equation
二阶椭圆型偏微分方程
1.
This paper presents a kind of finite volume element scheme for two-dimensional second order elliptic partial differential equations with Dirichlet boundary condition and we prove that the scheme has second order convergence accuracy with respect to discrete energy norm.
针对二维二阶椭圆型偏微分方程边值问题提出了一种新型的有限体积元格式,证明了该格式按离散能量模具有二阶收敛精度,具体算例表明,该格式计算效果良好。
6) elliptic partial differential equation
椭圆偏微分方程
1.
under a resonance condition,a unique existence of generalized solution to the Direchlet boundary value problem of the semi-linear elliptic partial differential equations is given,and this extended partially the results that was known.
利用极小极大原理 ,在共振条件下 ,证明了一个半线性椭圆偏微分方程 Direchlet边值问题广义解的存在唯一性定理 ,从而推广了已知的一些结果 。
2.
The paper discusses the regularity of solution of the mixed boundary value problem for elliptic partial differential equations on a rectangular parallelepiped by a priori estimate method, gives results about some additoinal regularity properties.
利用先验估计方法,讨论长方体上椭圆偏微分方程混杂问题解的正则性,给出有关某些附加正则性的结果。
补充资料:椭圆型偏微分方程
椭圆型偏微分方程 elliptic type, partial differential equation of 其典型代表是拉普拉斯方程与泊松方程(称Δu为拉普拉斯算子) Δu=-4πρ(x,y,z)(2) 拉普拉斯方程的二次连 续可微解称为调和函数,方程(1)有形如 的特解,其中S是一个曲面,μ为定义在S上的连续函数,(3)所定出的函数在S之外处满足(1),非齐次方程(即泊松方程)(2)有重要特解,它是以ρ为密度的体位势 当ρ在Ω内连续可微时,由(4)所确定的函数u在Ω内满足(2),在Ω外满足(1)。应用格林公式得 这说明:调和函数在区域内任何点的值,可由这函数在区域界面上的值以及法线微商来表示。 在单位球上的狄利克雷问题,对球面坐标为(ρ,θ,j)的点有 其中(θ0,j0)是积分的变元,是球面坐标。cosυ是方向(θ,j)和(θ0,j0)交角的余弦。椭圆型方程的理论已相当完整。 |
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条