说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 伽辽金变分方程
1)  Galcrkin's variational equation
伽辽金变分方程
2)  Galerkin variational method
伽辽金变分方法
1.
The fundamental solution to the orthotropic laminated plates under large deflection self oscillation was obtained by means of mathematical analysis and the oscillatory was figured out using Galerkin variational method.
首先用解析方法得到了正交异性层合板在大位移自振时的基本解 ,又用伽辽金变分方法求出了非线性振动时的频率 ,最后用网格法算出了最佳铺层
3)  galerkin approach
伽辽金方法
1.
The equations in the model were discretized by the assumption mode method and the Galerkin approach,and solved by the Runge-Kutta numerical method.
用假设模态法和伽辽金方法使方程离散化,然后用Runge-Kutta方法计算。
4)  Galerkin method
伽辽金方法
1.
Wavelet Galerkin method applied to wave equations with variable coefficients;
小波伽辽金方法应用于变系数波动方程
2.
The Galerkin method is applied to investigate the effeCtive conductivity of strongly nonlinear composite media.
应用伽辽金方法研究了强非线性复合介质的电导性质;讨论了杂质和基质都服从J=σ|E|2E的本构方程;在只保留最低阶近似的情况下,导出了这类复合介质的非线性有效电导率的近似解析公式。
3.
The existence of a time-periodic solution is proved by the Galerkin method,Leray-Schauder fixed point theorem andpriori estimates.
利用伽辽金方法、Leray-Schauder不动点原理和先验估计,证明了在带周期外力扰动和周期边界条件的影响下,非线性发展Ginzburg-Landau方程ut=(l+iα)Δu-(k+iβ)u2u+γ+f的时间周期解,其中f(t,x)是一个关于时间变量t的以ω为周期的函数。
5)  Galerkin methodEl
增量伽辽金方法
6)  stochastic Galerkin method
随机伽辽金方法
1.
Combined with a polynomial chaos expression(PCE),this paper applies the stochastic Galerkin method(SGM) to analyze the system response.
通过改进的去耦算法对随机互连线元进行去耦,结合随机伽辽金方法(SGM)和多项式混沌展开(PCE)进行互连分析,进而利用复逼近及二分法给出工艺参数扰动下互连时延的有限维表达式。
2.
Then the crosstalk is analyzed by Stochastic Galerkin Method(SGM)and Stochastic Collocation Method(SCM)respectively.
该方法将具有随机扰动的耦合互连线模型在线元分析阶段进行解耦,分别采用随机伽辽金方法(SGM)和随机点匹配方法(SCM)进行串扰分析。
补充资料:变分方程


变分方程
variational equations iS equations in variation

  变分方程组则“具有拟多项式的右方”.自治系统沿周期解(殆周期解)的变分方程是具有周期(殆周期)系数的线性微分方程组(见周期系数的线性微分方程组(l~r system of diffel℃Iltial equa加ns witll Per-iodic eoell记ients);殆周期系数的线性微分方程组(]i“既s”把m ofdi浅I-e 11tiajequa加拙withahl℃stperiod-ic coeffieients)). 上面给的定义适用于任意阶方程.例如,摆方程无十田Zsinx二O在下平衡位置(x=O,又二0)的变分方程(如果只有相空间中的初始点变化)是义+田Zx二O,称为摆的小振动方程(叫Llation for srnaU oscilia-tions of ape们(11llum),而在上平衡位置(x=冗,交=0)的变分方程是义一。Zx=0.对于微分流形上的微分方程,解的变分方程可以类似于上面讲过的R”上的情况来定义;变分方程的解之值在流形的切丛中.有两种方法把任意微分流形的情况化为R”的情况,第一种是把流形嵌入一个维数充分高的Euclid空问中,决仁把微分方程(向量场)拓展到一个邻域中去,第二种方法是在轨道的一个邻域中,用一个坐标卜中的坐标写出定义于微分流形上的微分方程,而这个坐标卡的选取光滑依赖于此点(例如,在Rlel刀ann流形上应用指数测地映射).这样就可以把这个方程写成R门上的方程,而且‘(和第一种化法一样)其右方和流形上的微分方程的右方(即向量场)有相同的光滑性.对于R~流形上的微分方程又二F(x),若不改变F,则其沿轨道戊(t)的变分方程可以写成 V:(二(,))r=V rF(x(t)),这里V。是共变导数(covdnant derivati祀).一个微分映射/:丫~尸(V”是一微分流形)沿着轨道毛.厂‘x}r。,的变分方程(若不变动f)是方程 犷(亡+I)一dff,:r(t);这方程之解犷(·)在t点取值于V”在点f『x处的切空间兀,*V”中,而解本身就是序列 {d(j,)叉若},。z,否〔双V”,d(f勿)义即f的m阶迭代在x之导数. 令V月为闭微分流形.映V”到V”上的c,类微分同胚厂之集合可赋以C’拓扑.以下的断言是成立的(见!4]):l)对每一个kc{l,…,n},瓜n,OB特征指数(Lyapunov cll田飞Icte比tic exPonent)几一(j,·,一R*。票,,,。潍。瓦令h,dft:一 (2)这里G*(双沪)是切空间双俨的k维向量子空间所成的G秘Inalm流形.它是一个第二B苗比类(B姗elass巴)函数又。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条