说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> Jordan标准形
1)  Jordan canonical form
Jordan标准形
1.
The properties of Jordan canonical form and their application;
Jordan标准形矩阵的性质及应用
2.
In this paper, the concept of elementary transformation of similitude is proposed, and the method how to find the Jordan canonical form of a square matrix and its transformation matrix are studied.
文章提出了初等相似变换的概念 ,探讨了如何利用初等相似变换法求一个方阵的Jordan标准形及变换矩阵 ,进而为求一个方阵的广义特征向量创造了条件。
3.
Then we apply it to a C[x] -module V , where V is a n-dimensional vector space and the operator from C[x]×V to V is defined by a linear transformation T of V , then we get a unique factorization of V and a right basis under which the transformation matrix of T is T s Jordan canonical form.
然后把它应用到一个具体的C[x]-模V,其中V是n维线性空间, C[x]×V到V的映射由V中的一个线性变换T定义,从而得到V的一个唯一分解,再结合线性代数有关知识给出V的一组基,T在这组基下的变换矩阵恰为T的Jordan标准形
2)  Jordan standard form
Jordan标准形
1.
This paper presents the identity for rank of square matrix by using the Jordan standard form of the matrix,and puts forward the methods for solving numbers of Jordan matrix from the root of matrix power by correlative fruition.
利用矩阵的Jordan标准形给出了方阵幂的秩恒等式,并利用相关结果讨论了由矩阵幂的秩确定矩阵的Jordan标准形中Jordan块的块数的方法。
2.
There has been the Existence of Module Method Demonstration of Jordan standard form of matrix.
线性代数中矩阵的Jordan标准形的存在性已有证明,而在群伦的研究中发现有限加群的结构性定理与矩阵的Jordan标准形的存在性是相通的,关键是用模论的语言来叙述。
3)  Jordan normal form
Jordan标准形
1.
The square-rooting matrix of the general situation Jordan normal form matrix;
关于一般情形的Jordan标准形矩阵的平方根矩阵
4)  Jordan canonical matrix
Jordan标准形
1.
In order to obtain a polynomial of less degree,the structure of Drazin inverse of matrix is analysed by using the theory of Jordan canonical matrix,and a computational method for polynomial d(λ) of least degree is given by using coefficients of minimal polynomial of matrix such that d(A) is Drazin inverse of A.
为降低多项式的次数,利用Jordan标准形理论分析了矩阵Drazin逆的结构,再由矩阵最小多项式的系数,给出了一个最低次多项式d(A)的算法,使d(A)为的Drazin的逆。
5)  the method of Jordanian canonical form
Jordan标准形法
1.
The four methods are the expansion method of matric exponential function,the method of Jordanian canonical form,the method of undetermined coefficients,and Laplacian transformation approach.
通过一个实例,给出计算状态转移矩阵eAt的四种不同的方法:矩阵指数函数展开法,Jordan标准形法,待定系数法,Laplace变换法。
6)  the Jordan canonical form
若当(Jordan)标准形
补充资料:德国国家标准(见德国标准化学会、德国标准体系)


德国国家标准(见德国标准化学会、德国标准体系)
National Standards of Germany: see Deutsches Institut für Normung, DIN;standards system of Germany

  Oeguo Guol心日icozhun德国国家标准(Natio.吐S加Ln山切曲of Gen”旧ny)见德国标准化学会;德国标准体系。
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条