说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 标准Jordan算子代数
1)  standard Jordan operator algebras
标准Jordan算子代数
1.
This thesis mainly study the additivity of maps on standard Jordan operator algebras and triangular algebras,concerning Jordan elementary map and Jordan triple elementary map.
本文主要研究了算子代数上映射的可加性问题,涉及标准Jordan算子代数和三角代数上的Jordan初等映射和Jordan三元初等映射。
2)  standard operator algebras
标准算子代数
1.
It is considered that additive commutative zero-product preserving maps on the algebraA,B of standard operator algebras,acting on real or complex Babach spaces H.
讨论了B(A)上保交换零积的可加映射,其中A是Banach空间X上的标准算子代数。
2.
A researched into the relationship between derivable mappings at zero point and derivable mappings on standard operator algebras of B(X) is clone so that it proved that the derivable mappings at the point zero on standard operator algebras which contain identity elements are actually generalized inner derivations.
研究了B(X)中的标准算子代数上的零点可导映射与可导映射的关系,证明了包含单位元的标准算子代数上的零点可导映射是广义内导子。
3)  standard operator algebra
标准算子代数
1.
The paper studies the property of additive mapping which satisfies special condition on the basis of standard operator algebra,then promots the special condition to ring and gets the corresponding conclusions.
首先在标准算子代数上论述了满足特殊条件的可加映射所具有的性质,然后把该特殊条件进一步推广到环上得出了相应的结论。
2.
Let A be a standard operator algebra in Banach space X , it is proved that every generalized derivation of A into B(X) is a generalized inner derivation.
设A为Banach空间中一标准算子代数,证明了A到B(X)的每一广义导子都是广义内导子,进而,如果线性映射δ:A→B(X)满足δ(P)=δ(P)P+Pδ(P)-Pδ(I)P,P∈A为幂等元,则δ为广义导子。
4)  C~*-standard operator algebra
C~*-标准算子代数
5)  standard subalgebras
标准子代数
6)  Jordan standard form
Jordan标准形
1.
This paper presents the identity for rank of square matrix by using the Jordan standard form of the matrix,and puts forward the methods for solving numbers of Jordan matrix from the root of matrix power by correlative fruition.
利用矩阵的Jordan标准形给出了方阵幂的秩恒等式,并利用相关结果讨论了由矩阵幂的秩确定矩阵的Jordan标准形中Jordan块的块数的方法。
2.
There has been the Existence of Module Method Demonstration of Jordan standard form of matrix.
线性代数中矩阵的Jordan标准形的存在性已有证明,而在群伦的研究中发现有限加群的结构性定理与矩阵的Jordan标准形的存在性是相通的,关键是用模论的语言来叙述。
补充资料:德国国家标准(见德国标准化学会、德国标准体系)


德国国家标准(见德国标准化学会、德国标准体系)
National Standards of Germany: see Deutsches Institut für Normung, DIN;standards system of Germany

  Oeguo Guol心日icozhun德国国家标准(Natio.吐S加Ln山切曲of Gen”旧ny)见德国标准化学会;德国标准体系。
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条