1) Jordan form
Jordan形
2) Jordan standard form
Jordan标准形
1.
This paper presents the identity for rank of square matrix by using the Jordan standard form of the matrix,and puts forward the methods for solving numbers of Jordan matrix from the root of matrix power by correlative fruition.
利用矩阵的Jordan标准形给出了方阵幂的秩恒等式,并利用相关结果讨论了由矩阵幂的秩确定矩阵的Jordan标准形中Jordan块的块数的方法。
2.
There has been the Existence of Module Method Demonstration of Jordan standard form of matrix.
线性代数中矩阵的Jordan标准形的存在性已有证明,而在群伦的研究中发现有限加群的结构性定理与矩阵的Jordan标准形的存在性是相通的,关键是用模论的语言来叙述。
3) Jordan canonical matrix
Jordan标准形
1.
In order to obtain a polynomial of less degree,the structure of Drazin inverse of matrix is analysed by using the theory of Jordan canonical matrix,and a computational method for polynomial d(λ) of least degree is given by using coefficients of minimal polynomial of matrix such that d(A) is Drazin inverse of A.
为降低多项式的次数,利用Jordan标准形理论分析了矩阵Drazin逆的结构,再由矩阵最小多项式的系数,给出了一个最低次多项式d(A)的算法,使d(A)为的Drazin的逆。
4) Jordan canonical form
Jordan标准形
1.
The properties of Jordan canonical form and their application;
Jordan标准形矩阵的性质及应用
2.
In this paper, the concept of elementary transformation of similitude is proposed, and the method how to find the Jordan canonical form of a square matrix and its transformation matrix are studied.
文章提出了初等相似变换的概念 ,探讨了如何利用初等相似变换法求一个方阵的Jordan标准形及变换矩阵 ,进而为求一个方阵的广义特征向量创造了条件。
3.
Then we apply it to a C[x] -module V , where V is a n-dimensional vector space and the operator from C[x]×V to V is defined by a linear transformation T of V , then we get a unique factorization of V and a right basis under which the transformation matrix of T is T s Jordan canonical form.
然后把它应用到一个具体的C[x]-模V,其中V是n维线性空间, C[x]×V到V的映射由V中的一个线性变换T定义,从而得到V的一个唯一分解,再结合线性代数有关知识给出V的一组基,T在这组基下的变换矩阵恰为T的Jordan标准形。
5) Jordan normal form
Jordan标准形
1.
The square-rooting matrix of the general situation Jordan normal form matrix;
关于一般情形的Jordan标准形矩阵的平方根矩阵
6) Jordan form matrix
Jordan形矩阵
补充资料:Jordan测度
Jordan测度
Jordan measure
J如加l测度[面曰明~;物p仄翻aMePa] 空间R”中的平行多面体(p鲜业kp妙刃) △={x“R”:a,蕊x‘(b‘,a,
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条