1) mean vector
均值向量
1.
Under quadratic loss function ‖δ(Y)-β‖2,a necessary and sufficient condition for the admissibility of the linear estimators of normal mean vector β is given.
假定多元随机变量Y~Nn(β,σ2V),β∈Rn,σ2>0未知,V≥0已知;讨论了均值向量β的线性估计的可容许性,并在二次损失函数‖δ(Y)-β‖2下,得到了均值向量β的线性估计可容许的充要条件。
2.
Modeling time-dependent expected mean vectors of QTL genotypes and the structure of the within-subject residual covariance matrix are the essence for functional mapping QTL of dynamic traits.
拟合与时间相关的QTL基因型的期望均值向量和剩余误差的协方差矩阵是动态性状功能定位的核心内容。
3.
These procedures are shown to be strongly consistent in estimating the number and locations of change points in the mean vector when the covari-ances are different.
本文根据信息论准则研究变点问题在模型选择的框架下,研究变点个数和变点 位置的检测,证明当方差不同时,均值向量变点个数及变点位置估计的强相合
2) average vector
均值向量
1.
The testing problem of double sample’s average vector and covariance matrix has been solved in the paper.
从应用角度出发,解决了双样本均值向量和协方差矩阵的检验问题。
2.
The evidence test with quantitative characteristic can convert to the problem of statistics theories with twosample average vector and covariance matrix testing at the same time.
具有量化特征的物证检验问题可以转化为双样本均值向量和协方差矩阵同时检验的统计理论问题。
3) mean vector control
均值向量控制
4) generalized vector equilibrium
广义向量值均衡
1.
Using an O-KKM type theorem,some existence theorems of solutions for abstract generalized vector equilibrium problems in the framework of topological ordered spaces is proved.
在拓扑序空间的框架下,利用一个序KKM型定理证明了一些广义向量值均衡问题解的存在性定理。
5) mean vector test
均值向量检验法
1.
Template match algorithm based on mean vector test
基于均值向量检验法的模板比较算法
6) weighted average of vector
向量的加权平均值
1.
Discussion on weighted average of vector and it s variance matrix;
向量的加权平均值及其方差阵
补充资料:特征值和特征向量
特征值和特征向量 characteristic value and characteristic vector 数学概念。若σ是线性空间V的线性变换,σ对V中某非零向量x的作用是伸缩 :σ(x)=aζ ,则称x是σ的属于a的特征向量 ,a称为σ的特征值。位似变换σk(即对V中所有a,有σk(a)=kα)使V中非零向量均为特征向量,它们同属特征值k;而旋转角θ(0<θ<π)的变换没有特征向量。可以通过矩阵表示求线性变换的特征值、特征向量。若A是n阶方阵,I是n阶单位矩阵,则称xI-A为A的特征方阵,xI-A的行列式 |xI-A|展开为x的n次多项式 fA(x)=xn-(a11+…+ann)xn-1+…+(-1)n|A|,称为A的特征多项式,它的根称为A的特征值。若λ0是A的一个特征值,则以λ0I-A为系数方阵的齐次方程组的非零解x称为A的属于λ的特征向量:Ax=λ0x。L.欧拉在化三元二次型到主轴的著作里隐含出现了特征方程概念,J.L.拉格朗日为处理六大行星运动的微分方程组首先明确给出特征方程概念。特征方程也称永年方程,特征值也称本征值、固有值。固有值问题在物理学许多部门是重要问题。线性变换或矩阵的对角化、二次型化到主轴都归为求特征值特征向量问题。每个实对称方阵的特征根均为实数。A.凯莱于19世纪中期通过对三阶方阵验证,宣告凯莱-哈密顿定理成立,即每个方阵A满足它的特征方程,fA(A)=An-(a11+…+ann)An-1+…+(-1)n|A|I=0。 |
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条