1) average of energy
能量均值
1.
By analyzing 25 cases of heroinaddicts and 25 cases of normal people,this paper adapts the method of sub-band filter to extract the feature vector of average of energy and Shaannon entropy value in specific bands of the above two groups of people,and finally draw out the differences.
应用子带滤波算法对25例海洛因成瘾者和25例正常人进行对比分析,提取出海洛因成瘾者和正常人的HRV信号在特定频段上的能量均值特征向量及Shannon熵值,并对比其差异。
2) the mean value of energy
能量平均值
1.
This is constructed by using the equivalence of the two different methods in calculating the normalization constant of wave function and the mean value of energy.
在一维无限深方势阱的解析解的基础上,利用波函数的归一化常数及能量平均值的两种不同算法的等价性,导出了∑∞n=11n2、∑∞n=11n4等24个无穷级数的求和公式。
3) average value of energy
平均能量值
4) average peak energy
平均峰值能量
1.
In order to research the relationship between electrostatic discharges (ESD) injected damage voltage and damage energy, the parallelism relationship between ESD voltages and injected average peak energy was studied.
实验采用静电放电模拟器在人体模型下对几种集成电路器件进行注入放电,通过 Agilent inifniium示波器记录并计算得到静电放电注入时相应的能量波形,取五次能量峰值的平均值记为该电压 下注入的峰值能量,采用曲线拟合的方法,得到注入的静电电压与平均峰值能量之间的关系表达式。
5) average intensity and image energy
亮度与能量均值
1.
In this algorithm,the video frames were picked up every few frames,then the retrived difference image of the adjacent frames was calculated,the difference image was divided into some sub-regions,with the average intensity and image energy as the constraints,the blocks which met the requirements of background were assembled together,so the background could be r.
该算法等间隔采样视频帧,然后对视频序列进行帧间差分,对得到的差分图像分块处理,通过比较各子块的亮度与能量均值,将各帧中满足要求的子块进行组合,从而快速地重建出背景。
6) Peak to mean en-velop power ratio(PMEPR)
峰值与均值能量比(PMEPR)
补充资料:能量原理与能量法
能量原理与能量法
energy principles and energy methods
nengliang yuanli yu nengliangfa能量原理与能量法(energy prineiple、and energy methods)根据能量来分析结构在外来作用下的反应的力学原理和方法。能量原理是力学中的机械能守恒定律或虚功原理在变形固体力学中的具体体现,它是能量法的理论基础,也是用能量法解题时必须满足的条件。这些条件是与平衡条件或位移协调条件等价的。能量原理和能量法与先进的计算技术相结合,显示出优越性。 应变能、余能和势能在单向应力状态下,弹性体的应变能密度(单位体积的应变能)怂可用一下式计算: ,‘一站O。凌它相当于图l中用阴影线表示的面积。另外,在单向应力状态下的余能(应力能)密度万可用下式计算: 万一俨:而它相当于图2中阴影部分的面积。由图1.21;r知 2,+万=JO‘’)。‘。~J茸祥一言一一£ d£ 图J应变能密度图2余能密度图3线弹性情尤下的应变能密度与余能密度由图3可知,线弹性体的余能密度与应变能密度在数值上相等。在简单应力状态下的应变能密度或余能密度经过总加后,可得到复杂应力状态下的应变能密度或余能密度。把它们在整个弹性体的体积内积分就得出整个弹性体的应变能或余能。对于线弹性体,应变能或余能可表示为位移或应力(内力)的二次式。弹性体的应变能与外力势能的总和称为总势能。外力势能在数值上等于各个外力在施力点位移上所做功的总和冠以负号。 能量原理在给定的外力作用下,在满足位移边界条件的所有各组位移中.实际存在的一组位移应使总势能为极值。对于稳定平衡状态,这个极值是极小值。因此,上述能量原理称为极小势能原理。它等价于平衡条件(含应力边界条件)。在满足平衡条件(含应力边界条件)的所有各组应力(内力)中,实际存在的一组应力‘内力)应使弹性体的余能为极值。对于稳定平衡状态,这个极值是极小值。因此,这个能量原理称为极小余能原理。它等价于位移协调条件。 上述两个能量原理实际上就是数学中求泛函极值的变分原理,应变能和余能分别是以位移或应力(内力夕为自变函数的泛函。所以能量原理也称变分原理,是工程力学的电要组成部分。在变分原理中,位移的变分就是虚位移,应力(内力)的变分就是虚应力(虚力)。因此,能量原理中的极小势能原理又相当于虚位移原理,极小余能原理又相当于虚应力(虚力)原理。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条