1) integral inequality
积分不等式
1.
Proving one kind integral inequality by means of geometric significance;
借助几何直观证明一类积分不等式
2.
Conditions for a sort of integral inequality;
一类积分不等式成立的条件(英文)
2) integral inequalities
积分不等式
1.
Three nonlinear integral inequalities of Bellman-Bihari type in two independent variables are given.
本文给出了两个变量的非线性Bellman—Bihari型积分不等式,推广了Fozi。
2.
In this paper,we discuss the partial stability for a class of nonlinear differential systems,by using integral inequalities.
利用一类积分不等式,讨论了一类非线性微分系统关于部分变元的稳定性,建立了一些关于部分变元稳定性的新准则,其中系统的某些项可以允许是t的无界函数。
3.
These new improper integral inequalities are closely related with some integral inequalities proved by the present author in an earlier paper.
这类含反常积分的非线性不等式与笔者以前证明的某些非线性积分不等式密切相关。
3) integral invariant
积分不等式
1.
This paper discusses submanifolds with parallel mean curvature vector in local symmetric spaces and obtains integral invariants about the square of modulus-length.
讨论局部对称空间中具有平行平均曲率向量的子流形,得到其关于第二基本形式模长平方的积分不等式的相关定理。
2.
In the paper,we discuss the integral invariant about the square of the norm of the second fundamental form S and the pinching problem of the submanifolds with parallel mean curvature vector in N n+p .
M是Nn + p的具有平行中曲率向量的n维紧致子流形 ,本文讨论了这类子流形关于第二基本形式模长平方的积分不等式及其Pinching问题 。
3.
In the paper, we discuss the compact submanifolds and obtains a integral invariant about the square of modulus-length and some theorems about the pinch of the square of modulus-length and the pinch of section curvature .
设N~(n+p)是截面曲率K_N满足2/1<δ≤K_N≤1的n+p维局部对称完备黎曼流形,M~n是N~(n+p)的具有平行平均曲率向量的n维紧致子流形,我们讨论这类子流形,得到其关于第二基本形式模长平方的积分不等式及其关于第二基本形式模长的平方、截面曲率的几个拼挤定理,将常曲率空间中的类似问题推广到局部对称空间。
4) integrodifferential inequality
积分微分不等式
1.
A new integrodifferential inequality is established.
建立了一个新的积分微分不等式。
6) Gronwall type inquality
Gronwall积分不等式
补充资料:积分不等式
分析数学中常用到下列积分不等式。
杨不等式 设??(x)是定义在[0, A]上满足??(0)=0的严格单调增加的连续函数,??-1(y)是??(x)的反函数,则对任何α∈[0,A],b∈[0,??(A)],有当且仅当??(α)=b时,上式中等号成立(见图)。
特别,当??(x)=xα(α>0)时,令
由杨不等式得到
当且仅当b=αp-1时,上式中等号成立。
赫尔德不等式 设(X,φ,μ)是测度空间(见测度论),E ∈φ,??(x)、g(x)分别在 E上p 次、q次可积,则 ??(x)g(x)在E上可积,并且上式中等号成立当且仅当存在实数θ以及不全为零的实数с1和с2,使得等式 arg??(x)g(x)=θ , с1|??(x)|p=с2|g(x)|q在E上几乎处处成立。
由积分的赫尔德不等式立即可得级数的赫尔德不等式:设
式中p>1,q>1 ,则绝对收敛,并且。上式中等号成立当且仅当存在实数θ 以及不全为零的非负实数 с1 和 с2,使对一切自然数 n,argαnbn=θ,且
施瓦兹不等式 赫尔德不等式中用得最普遍的是p=q=2的情况,此时的赫尔德不等式称为施瓦兹不等式,有时也称为柯西不等式或布尼亚科夫斯基不等式。它的积分形式、级数形式分别为上面两式中等号成立的充要条件分别是存在两个不全为零的常数с1和с2,使得с1??(x)=с2g(x)在E上几乎处处成立和对一切自然数n,с1αn=с2bn。
闵科夫斯基不等式 设(X,φ,μ是测度空间,E∈φ,??(x),g(x)都是E上p次(p≥1)可积函数,则??(x)+g(x)在E上p次可积,并且。当p>1时,上式中等号成立的充要条件是存在不全为零的非负实数с1和с2,使得с1??(x)=с2g(x)在E上几乎处处成立;当p=1时,上式中等号成立的充要条件是,arg??(x)=argg(x)在E上几乎处处成立。
由积分的闵科夫斯基不等式,可得级数的闵科夫斯基不等式:如果,p≥1,则当p>1时,上式中等号成立当且仅当存在不全为零的非负实数с1和с2,使对一切自然数n,с1αn=с2bn;当p=1时,上式中等号成立当且仅当对一切自然数n,argαn=argbn。
延森不等式 设φ(x)是[α,b]上有限实函数,如果对任何x1,x2∈[α,b]以及任何正数p1、p2,都有则称φ为[α,b]上的下凸函数。如果φ(x)是[α,b]上的下凸函数,则对任何x1,x2,...,xn∈[α,b]以及任何正数p1,p2,...,pn,有延森不等式:
积分形式的延森不等式:设φ(x)是[α,b]上的下凸函数,又设(X,φ,μ)是测度空间,E∈φ,p(x)是E上非负可积函数,并且,而??(x)是E上可测函数,并且α≤??(x)≤b,则。
杨不等式 设??(x)是定义在[0, A]上满足??(0)=0的严格单调增加的连续函数,??-1(y)是??(x)的反函数,则对任何α∈[0,A],b∈[0,??(A)],有当且仅当??(α)=b时,上式中等号成立(见图)。
特别,当??(x)=xα(α>0)时,令
由杨不等式得到
当且仅当b=αp-1时,上式中等号成立。
赫尔德不等式 设(X,φ,μ)是测度空间(见测度论),E ∈φ,??(x)、g(x)分别在 E上p 次、q次可积,则 ??(x)g(x)在E上可积,并且上式中等号成立当且仅当存在实数θ以及不全为零的实数с1和с2,使得等式 arg??(x)g(x)=θ , с1|??(x)|p=с2|g(x)|q在E上几乎处处成立。
由积分的赫尔德不等式立即可得级数的赫尔德不等式:设
式中p>1,q>1 ,则绝对收敛,并且。上式中等号成立当且仅当存在实数θ 以及不全为零的非负实数 с1 和 с2,使对一切自然数 n,argαnbn=θ,且
施瓦兹不等式 赫尔德不等式中用得最普遍的是p=q=2的情况,此时的赫尔德不等式称为施瓦兹不等式,有时也称为柯西不等式或布尼亚科夫斯基不等式。它的积分形式、级数形式分别为上面两式中等号成立的充要条件分别是存在两个不全为零的常数с1和с2,使得с1??(x)=с2g(x)在E上几乎处处成立和对一切自然数n,с1αn=с2bn。
闵科夫斯基不等式 设(X,φ,μ是测度空间,E∈φ,??(x),g(x)都是E上p次(p≥1)可积函数,则??(x)+g(x)在E上p次可积,并且。当p>1时,上式中等号成立的充要条件是存在不全为零的非负实数с1和с2,使得с1??(x)=с2g(x)在E上几乎处处成立;当p=1时,上式中等号成立的充要条件是,arg??(x)=argg(x)在E上几乎处处成立。
由积分的闵科夫斯基不等式,可得级数的闵科夫斯基不等式:如果,p≥1,则当p>1时,上式中等号成立当且仅当存在不全为零的非负实数с1和с2,使对一切自然数n,с1αn=с2bn;当p=1时,上式中等号成立当且仅当对一切自然数n,argαn=argbn。
延森不等式 设φ(x)是[α,b]上有限实函数,如果对任何x1,x2∈[α,b]以及任何正数p1、p2,都有则称φ为[α,b]上的下凸函数。如果φ(x)是[α,b]上的下凸函数,则对任何x1,x2,...,xn∈[α,b]以及任何正数p1,p2,...,pn,有延森不等式:
积分形式的延森不等式:设φ(x)是[α,b]上的下凸函数,又设(X,φ,μ)是测度空间,E∈φ,p(x)是E上非负可积函数,并且,而??(x)是E上可测函数,并且α≤??(x)≤b,则。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条