1)  B-Spline curve-fitting
B样条曲线拟合
2)  B-spline curve fitting
B-样条曲线拟合
1.
In this paper , an automatic InSAR image registration method is presented, based on B-spline curve fitting and matching, that can handle the registration of InSAR image efficiently.
该文提出了一种基于B-样条曲线拟合和匹配的InSAR复图像对的自动配准算法,能够有效地配准InSAR复图像对。
3)  B-spline
B-样条
1.
Terrain Reconstruction Algorithm Based on Bi-cubic B-spline Interpolation;
基于双三次B-样条插值的大地形重构
2.
Four-degree B-spline method for constructing theoretical treasury yield curves;
四次B-样条法构造国债收益率曲线
3.
Calculating Method of Contraction Operators in Fractal Interpolation Based on the B-spline;
基于B-样条分形插值的垂直尺度因子的计算方法
4)  B-spline
B样条
1.
B-spline Tool Offset of Free-Form Curve in Computer Numerical Control System;
鞋楦高速数控加工的列表曲线B样条刀具半径偏置方法
2.
Bicubic B-spline surface fitting based on data from section measurement;
截面测量数据的B样条曲面拟合
3.
Auto-adapted fitting algorithm of B-spline surface objects;
B样条曲面自适应拟合算法
5)  B spline
B样条
1.
Modeling design of plow surface based on uniform B spline;
基于均匀B样条的犁体曲面造型设计
2.
In view of the local unevenness of the spatial distribution of data from curved surface of shoe last, two ways of modeling the digitalized curve of shoe last are investigated by using uniform B spline.
在此基础上 ,针对鞋楦曲面数据空间分布的局部不均匀性 ,阐述使用均匀 B样条进行鞋楦数字化曲线建模的两种途径 。
3.
The 3 D tool surface description together with the automatic 3 D meshing methods and the contact search is carried out for the FEM numerical simulation of complicated massive forming based on the cubic B spline.
以三次B样条曲面描述为基础 ,对体成形数值模拟中的复杂模具型腔、锻件三维网格自动划分、锻件与模具接触的状态进行了一体化研究。
6)  B-splines
B样条
1.
Elastic Point Registration Method Based on B-splines;
基于B样条的弹性点配准方法
2.
3D deformation with hierarchical B-splines;
基于层次B样条的三维变形
3.
Methods Firstly, the global registration was achieved by the method of affine transformation composed of B-splines,whose knots were the four vertexes of the medical image.
目的:提出一种基于B样条的医学图像塔式配准新算法,即RE配准模型。
参考词条
补充资料:B样条曲线


B样条曲线
B-spline curve

  B yangtiQO qUxlanB样条曲线(BsPline curve)用B样条函数构造的曲线。B样条函数在19世纪初首先由N.肠bachevsky提出。1946年,1.J.段hoenbe唱用B样条函数光滑统计数据,并提出B样条近似理论。1972年,deB刀r,M.Cox,L.Mal侣field等人发现了B样条函数的递归关系,1974年,C心rdon和Ri~-feld用B样条的递归性质构造了B样条曲线。它除保持了决对er曲线的直观性和凸包性等优点之外,还可以进行局部修改,且曲线更逼近特征多边形。同时,曲线的阶次也与顶点数无关,因而更方便灵活。由于以上原因,B样条曲线得到越来越广泛的应用。 参照3戈ier曲线公式,已知n十1个控制点尸、(i二0,1,…,n)为特征多边形的顶点,K阶(K一1次)B样条曲线的表达式是:c(。)=艺尸八,*(。),其中从,*(u)是B样条调和函数,也称之为B样条基函数,按照递归公式可定义为:Ni,1(u)={‘若“镇“蕊‘、·‘(O其它(1)从,*(u)_(u一t,)从,;一1(u) t£+无--一t乞十业生丝卫些型己上:亘全些 t£+走一ti+1 t*一1镇u(t,+i其中t‘是节点值,T=「t。,tl,…,t:+2*]构成了K阶B样条函数的节点矢量,其中的节点是非减序列,且L二n一k+1。当节点沿参数轴作均匀等距分布(即t泛十1一t*二常数)时,则为均匀B样条函数。当节点沿参数轴的分布不等距时,即(t,+1一t,)护常数时,则表示非均匀B样条函数。 B样条曲线有如下性质: (1)局部性k阶B样条曲线只被相邻的K个顶点所控制,而与其它顶点无关。图1所示是一条均匀B样条曲线。由图可见尸5变化时只对其中一段曲线有影响。 (2)连续性B样条曲线在t、(k+1(i毛n)处公*1,4(u)=Nl,4(u)只+NZ,;(u)只十1+ N3,4(u)只+:+N4,4(u)只+3故第i段三次B样条曲线(见图2)可写成:C£·4(u)一置妈,4(u)只·厂2PI+: 图2对应的矩阵式是三次B样条曲线111,|||11|刘 一++(1/6)[u3 3一3一63 03 41从21飞阵0}…p‘0{{只田比u任[0,1],i=1,2,…,n一2有Q重节点的连续性不低于(k一Q一l)阶。整条曲线C(u)的连续性不低于(k一Q~一l)阶,其中Q~是在区间(红,t,十1)内的最大重节点数。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。