1) parabolic system
抛物方程组
1.
Uniform blow-up profiles for a quasilinear parabolic system with nonlocal sources;
一类具有非局部源的拟线性抛物方程组的一致爆破模式(英文)
2.
Global existence and blow up of solution to a nonlocal parabolic system;
非局部抛物方程组解的整体存在与爆破
3.
This paper proves the solutions of the initial value problems and initial boundary value problems with homogeneous boundary conditions of a class nonlinear parabolic system will globally die out at finite time, and some estimate for the die out time are obtained.
证明了一类非线性抛物方程组的初值问题和具有齐次边值条件的边值问题的解将在有限时刻全局熄灭,并给出了全局熄灭的时间估计。
3) parabolic differential system
抛物方程组
1.
Forced oscillation for boundary value problem of a class of impulsive delay parabolic differential system;
一类脉冲时滞抛物方程组边值问题的强迫振动性
2.
The oscillation propertie of solutions under Robin boundary value condition for a impulsive delay parabolic differential system is investigated, and some sufficient conditions of oscillation are obtained.
讨论了一类含脉冲的时滞抛物方程组在Robin边界条件下解的振动性,得到了其所有解振动的若干充分条件。
4) parabolic equation systems
抛物方程组
1.
Partial regularity for weak solutions of a class of quadric increasing triangular parabolic equation systems;
一类二次增长的三角形抛物方程组弱解的部分正则性
2.
However,there are only a few results about regularity for weak solutions of nonlinear parabolic equation systems.
二次增长的非线性抛物方程弱解的正则性研究已有了比较完备的结果,但对于非线性抛物方程组弱解的正则性研究取得的成果还不多,有关文献证明了对角型抛物方程组的弱解在一定条件下是HO¨lder连续的。
5) pseudo-parabolic system of equation
伪抛物方程组
1.
In this paper,we discuss the characteristic problem of one kind of pseudo-parabolic system of equation;the characteristic of its existence and uniqueness are proved by using the Riemann square matrix and functional integral system of equation.
利用Riemann方阵和泛函积分方程组,证明了一类伪抛物方程组特征问题的解的唯一存在性。
6) degenerate parabolic system
退化抛物方程组
1.
Global existence and blow-up of solutions to quasilinear degenerate parabolic system;
拟线性退化抛物方程组解的整体存在和有限爆破
2.
This paper deals with a degenerate parabolic system with nonlocal sources.
本文讨论一类具有非局部源退化抛物方程组。
3.
this paper investigates the uniquenes S Of solutions with compact support of a boundary value problem which comes from t He study of asymptotic behavior of blow up solution of the degenerate parabolic System.
研究一个来源于研究退化抛物方程组的渐近性而产生的常微分方程组 。
补充资料:抛物型偏微分方程
抛物型偏微分方程 parabolic type,partial differential equation of 偏微分方程的一类。最典型的是热传导方程 (a>0) (1)基本解是点热源的影响函数。若在t=0时在(ξ,η,ζ)处给定单位点热源,即u0(x0,y0,z0,0)=δ(ξ,η,ζ)(δ为狄拉克函数),则当t>0时便引起在R3的温度分布,这就是基本解。用傅里叶变换可得到它的表达式 热传导方程初值问题的解可用基本解叠加而成,即的解为 极值原理:一个内部有热源的传导过程,它的最低温度一定在边界上或初始时刻达到。更强的结论是 :如果t=T时在Ω内某一点达到最低温度 ,则在这个时刻以前(t<T时)u≡常数 ;又:若最低温度在t=T时边界¶Ω上某点P达到,则在这点上|P,Τ<0(n为外法线方向)。 |
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条