说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 移动焊接机器人
1)  welding mobile robot
移动焊接机器人
1.
A mathematical model is built for the curved seam tracking problem of wheeled welding mobile robot used in shipbuilding and large spherical tank welding.
针对轮式移动焊接机器人在造船、大型球罐焊接等工业生产中的弯曲焊缝跟踪问题,建立了机器人的数学模型。
2.
Firstly, the configuration of welding mobile robot is introduced, then algorithm and implementation of auto searching weld line is presented on the basis of kinematics model of the robot, at last trajectory planning among auto searching weld line is investigated in detail.
介绍了具有自寻迹功能的移动焊接机器人的系统组成 ,在分析移动机器人运动学模型的基础上 ,讨论了机器人坡口自寻迹的算法以及实现过程 ,最后重点分析了自寻迹过程中的轨迹规划 。
3.
Geometrical relationship between sensor vector and welding seam for welding mobile robot was investigated by applying least squares estimator method,then real-time identified algorithm of heading angle was proposed for welding mobile robot.
应用最小二乘法对移动焊接机器人传感器矢量与焊缝之间的位置关系进行了研究,提出了焊缝跟踪过程中小车方位角的实时辨识算法。
2)  mobile welding robot
移动焊接机器人
1.
Structure design of mobile welding robot based on rotating arc sensor for bending weld;
旋转电弧传感弯曲焊缝移动焊接机器人结构设计
2.
Mobile robot technology and seam tracking technology combines to form mobile welding robot.
研究了移动焊接机器人的关键技术 ,并对移动焊接机器人在国内外的研究现状及发展趋势进行了比较全面地介绍。
3.
Considering the poor welding condition,such as the space of lattice-shaped welding seam between the bottom of the cabin and inside of the deck is too small,a wheeled mobile welding robot was designed,then its inverse kinematics and the tracking simulation of welding seam was done by ADAMS software.
针对船舶建造过程中船舱底部与甲板内侧格子形焊缝空间狭小、焊接条件恶劣的情况,设计了一轮式移动焊接机器人,通过ADAMS软件对焊缝跟踪进行运动学逆解仿真,将仿真结果用于90°折线焊缝的跟踪焊接实验,从而减少了实验次数,降低了实验成本。
3)  wheeled mobile welding robot
轮式移动焊接机器人
4)  moving welding robot system
移动式焊接机器人系统
1.
For improving the dynamic quality of the arc-sensor moving welding robot system and improving the control accuracy, various mathematic modeling and simulating methods appear, which provide significative direction for the system designing、optimization and control.
为了改善电弧传感器移动式焊接机器人系统的动态品质、提高控制精度,出现了多种数学建模及仿真方法,为系统的设计、优化和控制提供了有意义的指导,但由于系统结构复杂、影响因素多,导致建模难度较大,目前对其机理的研究多限于零散、定性分析的水平,且研究的方法及范围过于简单和局限。
5)  mobile welding robot
移动式修焊机器人
1.
Dual DSP-based embedded visual feedback control system for mobile welding robots
移动式修焊机器人双DSP嵌入式视觉反馈控制系统
6)  welding robot
焊接机器人
1.
Research and development on the all-position welding robot used for steel structure;
钢结构全位置焊接机器人的研究与开发
2.
Key techniques of TIG welding robot in high-pressure air condition;
高压空气环境下TIG焊接机器人关键技术
3.
Pivotal technology development of shipping welding robot system;
船舶焊接机器人系统关键技术进展
补充资料:移动机器人
      一种由传感器、遥控操作器和自动控制的移动载体组成的机器人系统。移动机器人具有移动功能,在代替人从事危险、恶劣(如辐射、有毒等)环境下作业和人所不及的(如宇宙空间、水下等)环境作业方面,比一般机器人有更大的机动性、灵活性。
  
  60年代后期,美国和苏联为完成月球探测计划,研制并应用了移动机器人。美国"探测者"3号,其操作器在地面的遥控下,完成了在月球上挖沟和执行其他任务。苏联的"登月者"20号在无人驾驶的情况下降落在月球表面,操作器在月球表面钻削岩石,并把土壤和岩石样品装进回收容器并送回地球。70年代初期,日本早稻田大学研制出具有仿人功能的两足步行机器人。为适应原子能利用和海洋开发的需要,极限作业机器人和水下机器人也发展较快。
  
  移动机器人随其应用环境和移动方式的不同,研究内容也有很大差别。其共同的基本技术有传感器技术、移动技术、操作器、控制技术、人工智能等方面。它有相当于人的眼、耳、皮肤的视觉传感器、听觉传感器和触觉传感器。移动机构有轮式(如四轮式、两轮式、全方向式、履带式)、足式(如 6足、4足、2足)、混合式(用轮子和足)、特殊式(如吸附式、轨道式、蛇式)等类型。轮子适于平坦的路面,足式移动机构适于山岳地带和凹凸不平的环境。移动机器人的控制方式从遥控、监控向自治控制发展,综合应用机器视觉、问题求解、专家系统等人工智能等技术研制自治型移动机器人。
  
  移动机器人除用于宇宙探测、海洋开发和原子能等领域外,在工厂自动化、建筑、采矿、排险、军事、服务、农业等方面也有广泛的应用前景。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条