1) computational singular perturbation method
计算奇异值摄动方法
2) computational singular perturbation
计算奇异摄动法
3) singular perturbation method
奇异摄动方法
1.
The singular perturbation method is presented to separate the two-link flexible manipulator system into slow sub-system and fast sub - system.
在柔性机械臂轨迹控制中,要实现定位目标的同时必须消除柔性振动,利用奇异摄动方法将柔性臂系统分解为慢变和快变两个降阶子系统,并对慢变和快变子系统分别采用滑模控制方法和H∞控制方法设计了控制器。
2.
The paper used singular perturbation method to separate the Two-link Flexible Manipulator system into slow sub-system and fast sub-system and designed controller using Sliding Mode Co.
本文中采用奇异摄动方法将双连杆柔性机械臂系统分解为慢变和快变两个子系统,并对慢变子系统采用滑模控制方法设计了控制器。
4) singular value perturbation
奇异值摄动
5) singular perturbation
奇异摄动法
1.
According to the dynamic behavior of reactor-heat exchanger networks featuring multi-time scales, two sub models were derived respectively in two time scales using the method of singular perturbation modeling: a model about energy balance in fast time scale, and a model about material balance in slow time scale.
针对反应器-换热器网络动态特性在时间上的多尺度特性,应用奇异摄动法得到它在两个不同时间尺度上的子模型:快时间尺度上的能量平衡模型、慢时间尺度上的物料平衡模型。
2.
Then a singular perturbation method was adopted to solve the freezing problem, the analytical solution was obtained.
对球内凝固相变过程作了较为系统和全面的理论分析 ,建立了能够揭示在第三类边界条件下球体内相变传热过程物理机制的数学模型 ,用Lighthill奇异摄动法给出了球体内对称凝固问题的近似分析解 ,并以Ba(OH) 2 ·8H2 O为相变材料 ,得到了相变界面、相变介质温度随时间和热流密度随相变位置的变化规律 ,以及球囊半径和对流换热系数对凝固过程的影响。
3.
A slow subsystem and a fast subsystem are separated based on the singular perturbation method,which the sliding mode control method and H infinity control method are adopted in each subsystem respectively.
基于奇异摄动法将多连杆柔性机械臂系统分离为慢变和快变两个子系统,对两者分别采用滑模变结构控制和H∞控制,由此得出的组合控制使系统精确跟踪期望的轨迹,抑制弹性振动,并且使由非线性机械结构引起的结构不确定性和由弹性变形引起的非结构不确定性及外扰具有较强的鲁棒性。
6) singular perturbation technique
奇异摄动法
1.
The singular perturbation technique was applied to research the relationship between pressure aerated of isotropic supporting tube and axial buckling load,and the effects on the buckling load and host-buckling equilibrium path.
采用奇异摄动法研究各向同性充气支撑管的充气压力与轴压屈曲荷载之间的关系,及其对屈曲荷载和后屈曲平衡路径的影响。
2.
In this paper the Kapton-Al-Kapton surporting pipe used in space,which is filled with gas for unfolding,is taken as cylinder thin shell,its initial folding faults and wrinkles are considered as initial geometric deficiency,the singular perturbation technique was applied to research the effects of initial geometrical defects on buckling load and post-buckling equilibrium path.
将用于空间的Kapton-Al-Kapton充气展开支撑管视为圆柱薄壳,将其初始折痕、褶皱作为初始几何缺陷,采用奇异摄动法研究初始几何缺陷对屈曲荷载和后屈曲平衡路径的影响。
补充资料:摄动方法
把系统视为理想模型的参数或结构作了微小扰动的结果来研究其运动过程的数学方法。这种方法最早应用于天体力学,用来计算小天体对大天体运动的影响,后来广泛应用于物理学和力学的理论研究。摄动方法作为一般的数学方法,也是控制理论研究中的一种工具。摄动方法的基本思路是:如果一个系统Sε中包含有一个难以精确确定或作缓慢变化的参数ε,就可以令 ε=0,使系统Sε退化为s0,而把Sε看作是s0受到(由于ε≠0而引起的)摄动而形成的受扰系统。问题因而化成为在求解S0的基础上来找出系统Sε的运动表达式。这样做往往能达到简化数学处理的目的。摄动方法所提供的系统Sε的运动Γε的形式是s的幂级数(可能包含负幂次项),级数的各项系数是有关变量(时间、状态变量等)的函数。如果在这些变量的容许变化范围内,当ε趋于零时,Γε的表达式一致地(均匀地)趋于S0的运动表达式Γ0,就称表达式Γε为一致有效的。
摄动问题可分为正则摄动和奇异摄动两类形式。如果令 ε=0,Γε的表达式可化为Γ0,而且是一致有效的,就称这个摄动问题是正则摄动问题。如果在Sε中令ε=0会导致问题无解或多解,或者虽然当ε=0时Sε能化为s0并有解Γ0,但表达式Γε不一致有效,则称这个摄动问题为奇异摄动问题。正则摄动问题比较简单,也易于处理。常用的方法有幂级数展开法(不包含ε的负幂次)、参数微分法、迭代法等。奇异摄动问题则复杂得多,当ε 趋于0时系统Sε的行为或结构往往发生本质的或剧烈的改变,出现各种复杂的现象。奇异摄动问题的研究已发展为控制理论的一个重要分支。其中常用的方法有伸缩坐标法、匹配渐近展开法、复合展开法、参数变易法、平均法、多重尺度法等。
对于弱非线性系统,若把非线性部分看作是对线性部分的摄动,常能用摄动方法(这种情况常称为小参数法)得到相当好的结果。奇异摄动理论与分岔理论、突变论等也有比较密切的关系。
参考书目
M.Vidyasagar,Nonlinear Systems Analysis,Prentice-Hall,Inc., Englewood Cliffs, N.J., 1978.
R.E.O'Malley,Introduction to Singular Perturbations, Academic Press, New York, 1974.
摄动问题可分为正则摄动和奇异摄动两类形式。如果令 ε=0,Γε的表达式可化为Γ0,而且是一致有效的,就称这个摄动问题是正则摄动问题。如果在Sε中令ε=0会导致问题无解或多解,或者虽然当ε=0时Sε能化为s0并有解Γ0,但表达式Γε不一致有效,则称这个摄动问题为奇异摄动问题。正则摄动问题比较简单,也易于处理。常用的方法有幂级数展开法(不包含ε的负幂次)、参数微分法、迭代法等。奇异摄动问题则复杂得多,当ε 趋于0时系统Sε的行为或结构往往发生本质的或剧烈的改变,出现各种复杂的现象。奇异摄动问题的研究已发展为控制理论的一个重要分支。其中常用的方法有伸缩坐标法、匹配渐近展开法、复合展开法、参数变易法、平均法、多重尺度法等。
对于弱非线性系统,若把非线性部分看作是对线性部分的摄动,常能用摄动方法(这种情况常称为小参数法)得到相当好的结果。奇异摄动理论与分岔理论、突变论等也有比较密切的关系。
参考书目
M.Vidyasagar,Nonlinear Systems Analysis,Prentice-Hall,Inc., Englewood Cliffs, N.J., 1978.
R.E.O'Malley,Introduction to Singular Perturbations, Academic Press, New York, 1974.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条