说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> C0-半群族
1)  family of C_0-semigroups
C0-半群族
2)  family of C0 semigroups
C0半群族
3)  C_0-semigroup
C0-半群
1.
By means of the theory of C_0-semigroup and its nonlinear perturbation of bounded linear operators, we prove the existence and uniqueness and stability of solution for this SARS epidemic model.
 讨论了一种带年龄结构的SARS疾病模型,它是一组非线性偏微分方程组,应用有界线性算子的C0-半群理论及非线性扰动理论,证明了该方程组非负解的存在唯一性及稳定性。
4)  C0-semigroup
C0-半群
1.
In this paper,the author studies the sufficient conditions for the growth bound ω1 of C0-semigroup(S(t))t≥0,more than or less than the given constant ω,where(S(t))t≥0 is the perturbated semigroup by C0-semigroup(T(t))t≥0 under the bounded operator B.
文章研究Hilbert空间中具有增长ω0的C0-半群(T(t))t≥0,在有界算子B扰动后所成半群(S(t))t≥0的增长阶ω1大于或小于给定常数ω的充分条件。
2.
In this paper,the finite time and infinite time admissibilities of unbounded observation operators are introduced for linear systems in Banach spaces,the equivalences of the weak admissibilities and the general admissibility are proved under the condition that the C0-semigroup mapping S(t) is surjective.
给出观测算子的一种弱有限时、弱无限时容许性定义,讨论了在C0-半群满射条件下此类容许性与通常的容许性等价。
3.
By the positive c0-semigroup which is generated by system operator,we proved the existence and uniqueness of the non-negative weak solution of the system depended on time.
讨论由软件和硬件构成的串联可修复计算机系统,利用系统算子生成的Banach空间中的正压缩c0-半群的性质及泛函分析的方法,证明该系统具有唯一非负时间依赖弱解。
5)  C0 Semigroup
C0半群
1.
We prove that the eventual norm continuity of C0 semigroup Tt for t>t0(t0≥0) is equialent to the smoothness property of convlution operator Kf(t)=∫t0Tt+t0-s(f(s))ds on Lp(,X).
文章引入定义在Lp([0,τ],X)上的有界算子的光滑性质(即R iesz准则),证明了C0半群Tt对t>t0的最终范数连续性与定义在Lp([0,τ],X)上的卷积算子Kf(t)=t∫0Tt+t0-s(f s)ds具有光滑性质是等价的。
2.
A sufficient condition is obtained for a class of second order operator matrices to generate C0 semigroups.
给出了一类二阶算子矩阵生成C0半群的一个充分条件,并应用此条件证明了一类具体的二阶算子矩阵可生成C0半群。
3.
It proves the transport operator generates a strongly continuous C0 semigroup and the compactness properties of the second-order remained term of the Dyson-Phillips expansion for the C0 semigroup in Lp(1<p<∞) space,and to obtain the spectrum of the transport operator consist of isolate eigenvalues which have a finite algebraic multiplicity.
在Lp(1
6)  positive C0-semigroup
正C0-半群
补充资料:Ⅱ-Ⅵ族化合物半导体材料


Ⅱ-Ⅵ族化合物半导体材料
Ⅱ - Ⅵ compound semiconductor material

er{IUZU hU0heWU bondQ0t}COI}100卜vI族化合物半导体材料(l一vl compoundsemiconduCtor material)由元素周期表中的IA族与矶A族构成的化合物半导体材料。它是重要的半导体材料,在重要性与应用方面仅次于l一v族化合物半导体材料。它们的主要性质见表。卜VI族化合物的主要性质到一一,、得攫笋馨薰营燕羞蒸默藻万一”一‘(万,)
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条