说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> ω-超广义函数空间
1)  ωultradistributions
ω-超广义函数空间
2)  ω-ultradistributions
ω-超广义函数
1.
The Properties and criteria of ω-ultradistributions D~′*;
ω-超广义函数空间D′*的性质及其判别定理
3)  ω -ultradifferentiable functions
ω-超可微函数空间
1.
In the paper, the convolution of ω -ultradifferentiable functions is discussed, and a result that D(RN) is the operator space of ε*(RN) in the sense of convolution is proven.
本为利用Fourier-laplace变换对ω-超可微函数空间上的卷积运算进行了讨论,证明了在卷积意义下D(RN)是ε*(RN)的乘子空间。
4)  generalized function denotation space
广义函数空间
5)  ω-test function spaces
ω-试验函数空间
6)  ultradistributions
超广义函数
1.
In the paper,the operation of convolution in ω-ultradistributions is discussed,and some formulas are given.
讨论ω-超广义函数间中的卷积运算,并且给出了一些超广义函数卷积运算的公式。
2.
In the paper,some regularization properties of ω-ultradifferentiable functions D(w)(Rn) and ω-ultradistributions D′(w)(Rn) are discussed.
文章讨论了ω-超可微函数空间D′(ω)(Rn)和ω-超广义函数空间D(ω)(Rn)中的一些正则化性质,证明了当ε→0时,Tε=T*αε→T(D′(ω)Rn)。
补充资料:广义函数
广义函数
generalized function,distribution

   古典函数概念的推广。关于广义函数的研究构成了泛函分析中有着广泛应用的一个重要分支。历史上第一个广义函数是由物理学家P.A.M.狄拉克引进的,他因为陈述量子力学中某些量的关系时需要引入了“函数”δx):当x≠0时,δx)=0,但!!!G1160_1。按20世纪前所形成的数学概念是无法理解这样奇怪的函数的。然而物理学上一切点量,如点质量、点电荷、偶极子、瞬时打击力、瞬时源等物理量用它来描述不仅方便、物理含义清楚,而且当它被当作普通函数参加运算,如对它进行微分和傅里叶变换,将它参与微分方程求解等所得到的数学结论和物理结论是吻合的。这就迫使人们要为这类怪函数确立严格的数学基础。最初理解的方式之一是把这种怪函数设想成直线上某种分布所相应的“密度”函数。所以广义函数又称为分布,广义函数论又称分布理论。用分布的观念为这些怪函数建立基础虽然很直观,但对于复杂情况就又显得繁琐而不很明确。后来随着泛函分析的发展,L.施瓦尔茨(1945)用泛函分析观点为广义函数建立了一整套严格的理论,接着I.M.盖尔范德对广义函数论又作了重要发展。从此,广义函数被广泛地应用于数学、物理、力学以及分析数学的其他各个分支,例如微分方程、随机过程、流形理论等等,它还被应用到群的表示理论,特别是它有力地促进了偏微分方程近30年来的发展。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条