1) impulsive infinite delay differential equation
脉冲无限时滞微分方程
1.
Uniformly asymptotic stability of zero solution of impulsive infinite delay differential equations
脉冲无限时滞微分方程零解的一致渐近稳定性
2) Impulsive delay differential equation
脉冲时滞微分方程
1.
Sufficient condtion for oscillation of all solutions of a class of second order nonlinear impulsive delay differential equation is obtained by using generalized Ricatti transform,which extend the corresponding results of Dzˇurina and Stavroulakis [Appl Math Comput,2003,140,445—453] for equations without impulsive effects.
利用广义黎卡提变换得到了一类二阶非线性脉冲时滞微分方程所有解振动的充分条件,推广了Dz∨urina和Stavroulakis中关于非脉冲方程的相关结果。
2.
In this paper,oscillations of second-order nonlinear impulsive delay differential equation with damping are investigated,and some sufficient conditions about oscillations of second-order nonlinear impulsive differential equation with damping are obtained.
研究了二阶非线性阻尼脉冲时滞微分方程解的振动性,得到振动解的充分条件。
3.
The stability of a class of nth-order linear impulsive delay differential equations is studied and the comparison principle is established for the stability of the zero solution.
通过对一类n阶线性脉冲时滞微分方程零解稳定性的讨论,建立了零解稳定性的比较结果,给出了零解一致稳定、渐近稳定与指数稳定的充分条件。
3) differential equation with impulses and delay
时滞脉冲微分方程
1.
In this paper,by using the ordinary dichotomy and a fixed point theorem,we study the existence of almost periodic solution for a differential equation with impulses and delay as follows{x′=A(t)x+f(t,x(t-τ)),t≠tk,△x(t)=Bkx(t)+Ik(x(t)),t=tk,k∈Z.
利用普通型二分性和不动点原理,研究了时滞脉冲微分方程x′=A(t)x+f(t,x(t-τ)),t≠tk△x(t)=Bkx(t)+Ik(x(t)),t=tk,k∈Z的概周期解,得到了系统存在概周期解的一组充分条件。
5) Functional differential equation with infinite delay
无限时滞泛函微分方程
1.
Based upon it, we obtain the mild solvability and satability for a kind of functional differential equation with infinite delay.
本文在一关抽象空间中研究无限时滞泛函微分方程。
6) solution of second order nonlinear impulsive differential equation with delays
二阶非线性具时滞脉冲微分方程解
补充资料:脉冲
1.指电流或电压短暂的起伏变化。各种高频脉冲广泛用在无线电技术中。 2.指变化规律类似电脉冲的现象。如脉冲激光器。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条