1) Impulsive neutral delay differential equation
脉冲中立型时滞微分方程
2) neutral delay differential equation
中立型时滞微分方程
1.
Generalized Characteristic Equation for a class neutral delay differential equations;
一类中立型时滞微分方程的广义特征方程
2.
Existence criteria is established for the periodic solution of the nonlinear neutral delay differential equation x′(t)=f(t,x(t),x(t-τ 1(t)),x′(t-τ 2(t)))+p(t) by means of an abstract continuous theorem of k-set contractive operator and some analysis technique.
利用k 集压缩算子拓扑度抽象连续定理和某些分析技巧 ,讨论了一类非线性中立型时滞微分方程x′(t)=f(x ,x(t) ,x(t-τ1(t) ) ,x′(t-τ2 (t) ) ) +p(t)的周期解问题 ,得到了其周期解存在的充分条件 。
3.
In this paper, a new suffcient condition for the oscillation of all solutions of first order neutral delay differential equations is first obtained.
文中首先得到一阶中立型时滞微分方程所有解振动的一个新的充分条件 ,然后把这个结果推广到一个一般的中立型微分方程 ,改进了文献中许多已知结
3) neutral delay differential equations
中立型时滞微分方程
1.
Asymptotic stability of a class of second-order neutral delay differential equations;
一类二阶中立型时滞微分方程的渐近稳定性
2.
This paper presents the sufficient conditions of oscillation of all solutions for the first order neutral delay differential equations with positive and negative coefficient,that isddt[x(f)-C(f)x(f-r)]+P(t)x(f-t)-Q(f)x(f-o)=0,by using the equivalence relation between the delay differential equation and delay differential inequality.
利用时滞微分方程与时滞微分不等式之间的一种等价关系,得到了具有正负项系数的一阶中立型时滞微分方程:d/dt[x(t)-C(t)x(t-r)]+P(t)x(t-τ)-Q(t)x(t-δ)=0一切解振动的充分条件。
3.
In this paper, we obtain the sufficient conditions, by Lebesgue s dominated convergence theorem in the Banach space and some skills in analytics, for existence positive solutions of a class of neutral delay differential equations with positive and negative coefficients as follow:′+p(t)x(t-τ)-q(t)x(t-δ)=0,t≥t1>0, where, a(t)∈C(me examples.
考虑如下具有正负系数的中立型时滞微分方程:[a(t)x(t)-b(t)x(t-r)]′+p(t)x(t-τ)-q(t)x(t-δ)=0,t≥t1>0,其中a(t)∈C([t,∞),(0,∞));p(t),q(t)∈C([t1,∞),R+),R+=[0,∞) 本文通过在Banach空间中,用勒贝格控制收敛定理和分析学中的一些技巧建立了该方程存在最终正解的一个充分条件,并举例加以说明 当a(t)≡1时,已有许多文章讨论过对上述方程通过换元化为a(t)≡1的情形,但通过本文可以看出,对上述方程的进一步研究是有意义
4) impulsive neutral differential equation
脉冲中立型微分方程
1.
Aim To investigate the existence of positive solutions for impulsive neutral differential equations.
目的 研究脉冲中立型微分方程正解的存在性。
2.
In this paper,the first order nonlinear impulsive neutral differential equation with piecewise constant deviating arguments [x(t)-cx([t])]′-p(t)f(x([t]))=0,t≥0,t≠k, x(k)=b k x(k - ),k=1,2,.
讨论带逐段常数变元一阶非线性脉冲中立型微分方程,获得其解非振动性和渐近性制据
5) Impulsive delay differential equation
脉冲时滞微分方程
1.
Sufficient condtion for oscillation of all solutions of a class of second order nonlinear impulsive delay differential equation is obtained by using generalized Ricatti transform,which extend the corresponding results of Dzˇurina and Stavroulakis [Appl Math Comput,2003,140,445—453] for equations without impulsive effects.
利用广义黎卡提变换得到了一类二阶非线性脉冲时滞微分方程所有解振动的充分条件,推广了Dz∨urina和Stavroulakis中关于非脉冲方程的相关结果。
2.
In this paper,oscillations of second-order nonlinear impulsive delay differential equation with damping are investigated,and some sufficient conditions about oscillations of second-order nonlinear impulsive differential equation with damping are obtained.
研究了二阶非线性阻尼脉冲时滞微分方程解的振动性,得到振动解的充分条件。
3.
The stability of a class of nth-order linear impulsive delay differential equations is studied and the comparison principle is established for the stability of the zero solution.
通过对一类n阶线性脉冲时滞微分方程零解稳定性的讨论,建立了零解稳定性的比较结果,给出了零解一致稳定、渐近稳定与指数稳定的充分条件。
6) differential equation with impulses and delay
时滞脉冲微分方程
1.
In this paper,by using the ordinary dichotomy and a fixed point theorem,we study the existence of almost periodic solution for a differential equation with impulses and delay as follows{x′=A(t)x+f(t,x(t-τ)),t≠tk,△x(t)=Bkx(t)+Ik(x(t)),t=tk,k∈Z.
利用普通型二分性和不动点原理,研究了时滞脉冲微分方程x′=A(t)x+f(t,x(t-τ)),t≠tk△x(t)=Bkx(t)+Ik(x(t)),t=tk,k∈Z的概周期解,得到了系统存在概周期解的一组充分条件。
补充资料:脉冲
1.指电流或电压短暂的起伏变化。各种高频脉冲广泛用在无线电技术中。 2.指变化规律类似电脉冲的现象。如脉冲激光器。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条