1) explosive positive solutions
上下解定理
1.
Some sets of suitable conditions are given by using the explosive super-subsolution method,the inner estimation theory and the perturbed technique,which guarantee,respectively,the existence of explosive positive solutions.
运用上下解定理和摄动方法,得到了若干正爆破解存在的充分性条件,并就解存在的必要性做了论证。
2) super-subsolution principle
上下解原理
1.
We use the super-subsolution principle, maximal principle and approximation theory to know the existence, monotonicity with respect toλ, the boundary behaviour and the regularity of solutions.
利用上下解原理,极值原理,逼近原理得出了解的存在性,关于λ的单调性,边界行为和正则性。
3) upper and lower bound theorems
上下限定理
1.
Through on upper and lower bound theorems and slip line method,this paper computes the static field and velocity field,and obtains stress field,velocity field,and earth pressure distribution when considering and no considering the friction between soil and retaining wall.
文中基于滑移线法,利用上下限定理,对墙后土体的静力场和速度场进行了计算,分别求得考虑和不考虑墙土摩擦时,土体中的应力场、速度场和土压力分布。
4) upper and lower bound theorem
上下界定理
5) Upper and Lower Solution
上下解
1.
The upper and lower solution method of nonlocal problem for the first order ordinary differential equation;
一阶常微分方程非局部问题的上下解方法
2.
Based on upper and lower solutions,the existence and uniqueness theorem are established.
以上下解为基础,建立了解的唯一性定理,在适当条件下,构造具体的上下解,得到了解的存在性和唯一性。
3.
Based on the upper and lower solution, the uniqueness theorem is established.
利用微分不等式理论,研究了二阶Volterra型积分微分方程奇摄动的非线性边值问题,以上下解为基础,建立了解的唯一性定理,在适当条件下,构造具体的上下解,得到了解的唯一性。
6) upper and lower solutions
上下解
1.
The method of upper and lower solutions for higher order P-Laplace equation boundary value problems;
高阶P-Laplace方程边值问题的上下解方法
2.
The upper and lower solutions of m-point boundary value problems at resonance and topological degree;
m点边值共振问题的上下解和拓扑度
3.
Squeeze Rule and the Upper and Lower Solutions Method for Differential Equation;
夹逼准则与微分方程的上下解方法
补充资料:上下
①职位、辈分较高的人和较低的人:君臣上下|上下交而其志同也|和上下尊卑等列。②高处与低处;上面与下面。有时具体指天、地,山、泽:上下未形,何由考之|畴若予上下草木鸟兽?③犹言增减:从其爵而上下之。④表示程度的高低,事物的优劣:不相上下。⑤犹言古今:篇章博举,通于上下。⑥犹言前后:上下文|上下要相联,首尾要相应。⑦犹言左右,表示约数:一斤上下|五十岁上下。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条