1) method of upper and lower solutions
上、下解法
1.
By using the method of upper and lower solutions,we obtain the existence of solutions for boundary value problem of second order integro differential equations of Volterra type in a normal cone.
利用上、下解法在正规锥上证明了二阶非线性Volterra型积分微分方程边值问题解的存在性。
2) Method of upper and lower solutions
上下解方法
1.
In this paper,we discuss the existence of solution for fourth-order boundary value problems by using method of upper and lower solutions and maximum principle,where nonlinear term is Caratheodory function up to one side Lipschitz condition.
利用上下解方法和最大值原理讨论了四阶边值问题解的存在性。
2.
In this paper, the method of upper and lower solutions and the fixed point theorem are used to investigate the existence of extremal solution of PBVP for second-order discontinuous differential equation with dependence on first derivative.
利用上下解方法和不动点定理,给出了含导数项的不连续二阶非线性微分方程周期边值问题的极解。
3) the method of upper and lower solutions
上下解方法
1.
In this paper,we make use of the method of upper and lower solutions,cone theory,the Schauder-fixed point theorem,Amann theorem and mapping degree theory to study the Sturm-Liouville boundary value problems,and obtain existence conclutions which have multiple nongenative solutions under some certain conditions.
利用上下解方法,锥理论,Schauder不动点定理,Amann不动点定理以及映射度理论研究Sturm-Liouville边值问题(SL。
2.
By using the method of upper and lower solutions,the periodic boundary value problem for first-order impulsive delay differential equations is considered,and the existence of the maximal and minimal solutions is obtained.
利用上下解方法及单调迭代技巧,讨论了一类一阶脉冲时滞微分方程的周期边值问题,获得了其极大解与极小解的存在性,这样可将方程的解控制在极小解与极大解之间。
4) Upper and Lower solutions
上下解方法
1.
By using Upper and Lower solutions method,Leray-Schauder degree theory and Differential inequality method,we establish the existence and uniqueness theorems for a kind of nth-order nonlinear two-point boundary value problems with weaker Nagumo condition, and we give an example to demmonstrate our results.
本文利用Leray-schauder度理论,上下解方法及微分不等式方法等,在较弱的Nagumo条件下得到了一类n阶非线性两点边值问题解的存在性与唯—性结果,并给出了应用举例。
2.
Based on the upper and lower solutions method,under suitable conditions,existence of solution of a three-point boundary value problem forthird-order ordinary differential equation with nonlinear mixed boundary conditions is obtained.
基于上下解方法,在一定条件下,得到了一类带有非线性混合边界条件的三阶常微分方程的非线性三点边值问题解的存在性,作为上述存在性结果的应用,在推论中给出了一类三阶非线性微分方程三点边值问题解的存在性。
3.
And based on the principle,the existence of the solution to the corresponding nonlinear boundary value problems is proved by taking advantage of the upper and lower solutions method.
讨论了一类偶数阶微分算子的最大值原理,基于该原理用上下解方法证明了相应的非线性边值问题解的存在性,在某些附加条件之下,可以建立一种单调迭代的方法来求解这类问题,给出的例子强调了结果的有效性。
5) upper and lower solution method
上下解方法
1.
Aimed at the mathematic problem in the model of the pendulum oscillation,the paper introduces the study on the existence of odd-harmonic solutions to second order semi-linear differential equation which describes the model of the pendulum oscillation by using upper and lower solution method monotone iterative technique and the Schauder fixed point theorem respectively.
针对摆型振动模型中的数学问题,分别采用上下解方法、单调迭代法及Schauder不动点定理研究了摆型振动模型的二阶半线性微分方程奇调和解的存在性。
2.
Using the Leray-Schauder theory and upper and lower solution method,the existence of solutions for general initial value problem of first order differential equationx′(t)=f(t,x(t)),a.
运用Leray-Schauder原理和上下解方法,讨论了一阶常微分方程广义初值问题x′(t)=f(t,x(t)), a e t∈[0,T],x(0)+∫T0a(t)x(t)dt=c解的存在性。
3.
Applying upper and lower solution method,we investigate the existence of solutions of a class of periodic boundary value problems for impulsive differential equations with piecewise constant argument.
利用上下解方法 ,研究了一类具逐段常数变元的脉冲微分方程的周期边值问题的解的存在
6) upper and lower solutions method
上下解方法
1.
In this paper,we study the existence problem of fourth-order boundary value problems with u′ term using upper and lower solutions method.
利用上下解方法,研究了含u′项的四阶微分方程边值问题的解的存在性。
2.
By using the upper and lower solutions method and Leray-Schander degree an application of results is given.
利用上下解方法及Leray-Schauder度,研究单边Nagumo条件下四阶微分方程边值问题解的存在性,并给出所获结果的一个应用。
3.
In this paper,the upper and lower solutions method and the differential inequality technique are used to study the solvability of a nonlinear third-order boundary value problem.
本文利用上下解方法和微分不等式技巧研究了一类非线性三阶边值问题的可解性,在非线性项满足某些局部性条件时得到了一些存在性结论。
补充资料:氨分解法
氨分解法
ammonia destruction process
先在余热锅炉内冷却至280℃,再由锅炉软水冷却至200℃,然后送至焦炉煤气初冷器前的吸煤气管道.余热锅护回收的废气热量能生产1.05州田a的中压蒸汽。分解护用焦炉煤气加热,以维持炉温1 100一1150℃。当分解炉短时间停产时,氨气可自动返回粗煤气管道。分解护装有火焰监测器和安全联锁装置。一旦出现煤气、空气压力过低或锅炉水位过低等不正常状态时,分解炉便自动熄火。 氨分解法的特点是:氨分解率高,可达100%;氰化氢分解率也达100%。废气送入吸煤气管道,不污染大气。装置年工作日为330天。 (石岩)an fenjiefa氮分解法(ammon讯uestruetion process)水洗氛法回收氛的方法之一。该法以软水为吸收液,回收燕炉煤气中的氨,并在高温和催化剂等作用下将氨分解为氮和氢。氨分解法是德国开发的。欧洲一些国家和日本相继采用,1990年氨分解法装置在中国建成并投产。 氨分解法的工艺流程见图。焦炉煤气在终冷塔降 煤气一〕下/ 氨分解法的工艺流程 1一终冷塔;2一1号洗氮塔;3一2号洗氨塔; 4一蒸氨塔;5一氨分解炉;6一余热锅妒温后,进入两台串联的洗氮塔,煤气中的氨被喷洒的软水回收。从l号洗氨塔排出的富氨水经换热送入蒸氛塔,被塔下部送入的蒸汽蒸出氨,氨气从塔顶排出。蒸氨废水经换热和冷却后送入洗氨塔循环使用。蒸氨塔顶排出的氨气进入氨分解炉,在高温和催化剂作用下,氨气中的氨和氰化氢分解为氮、氢、一氧化碳和水气。炉内的主要反应为: NH3—~1 .5H2+0.5N2 HCN十HZO—~ 1 .5H2+CO十0.5N2 这些反应均为放热反应。炉内产生的高温废气首
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条