2) the core of extended affine Lie algebras
扩张仿射李代数的核
3) Lie algebra and Lie mapping
Lie代数和Lie映射
5) extension algebra
扩张代数
1.
Selfinjective algebras stably equivalent to the extension algebras;
稳定等价于扩张代数的自入射代数(英文)
2.
has given the definition and some properties of the extension algebra A(C,B).
惠昌常给出扩张代数A(C,B)的定义及基本性质,本文利用同调代数和倾斜理论的有关知识,首先通过研究倾斜C-模与倾斜A-模的关系,给出了MCA是一个倾斜A-模的充分必要条件。
6) Lie algebra
Lie代数
1.
An extension of Lie algebra and a related integrable system;
推广的一类Lie代数及其相关的一族可积系统
2.
Lie algebraic method for the vibrational excited states of a SO 2 molecule has been studied.
利用Lie代数方法研究了SO2 分子的振动激发态能谱 ,拟合 30条光谱能级得到的RMS误差是 1 66cm- 1。
3.
Through analyzing special properties and structures of Lie group and its Lie algebra,a new steepest descent algorithm on Lie groups is developed.
通过对Lie群及其Lie代数的基本性质及特殊结构的分析,提出了求解一般Lie群上优化问题的最速下降算法,并对算法的收敛性作了一定的分析。
补充资料:Lie algebra
李代数(lie algebra)
一类重要的非结合代数。非结合代数是环论的一个分支,与结合代数有着密切联系。结合代数的定义中把乘法结合律删去,就是非结合代数。
李代数是挪威数学家s.李在19世纪后期研究连续变换群时引进的一个数学概念,它与李群的研究密切相关。在更早些时候,它曾以含蓄的形式出现在力学中,其先决条件是“无穷小变换”概念,这至少可追溯到微积分的发端时代。可用李代数语言表述的最早事实之一是关于哈密顿方程的积分问题。s.李是从探讨具有r个参数的有限单群的结构开始的,并发现李代数的四种主要类型。法国数学家é.嘉当在1894年的论文中给出变数和参变数在复数域中的全部单李代数的一个完全分类。他和德国数学家基灵都发现,全部单李代数分成4个类型和5个例外代数,é.嘉当还构造出这些例外代数。é.嘉当和德国数学家外尔还用表示论来研究李代数,后者得到一个关键性的结果。“李代数”这个术语是1934年由外尔引进的。随着时间的推移,李代数在数学以及古典力学和量子力学中的地位不断上升。到20世纪80年代,李代数不再仅仅被理解为群论问题线性化的工具,它还是有限群理论及线性代数中许多重要问题的来源。李代数的理论不断得到完善和发展,其理论与方法已渗透到数学和理论物理的许多领域。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条