1) Strictly Ostrowski diagonally dominant matrix
严格Ostrowski对角占优矩阵
2) generalized strictly Ostrowski diagonally dominant matrix
广义严格Ostrowski对角占优矩阵
3) Ostrowski diagonally dominant matrix
Ostrowski对角占优矩阵
1.
Let A=(aij)∈Cn×n,if there exists α∈(0,1) which can make |aii|≥Rαi(A)S1-αi(A) be right for i∈N={1,2,…,n},then A is called an Ostrowski diagonally dominant matrix.
该文首先推广Ostrowski对角占优矩阵的概念到广义Ostrowski对角占优矩阵;最后得到了判别非奇异H-矩阵的一个判定方法。
4) strictly diagonally dominant matrix
严格对角占优矩阵
1.
In particular,for a strictly diagonally dominant matrix,we improve some related results.
设A为严格双对角占优矩阵,给出了‖A-1‖∞的上界估计,特别地,当A为严格对角占优矩阵,改进了现有的相关结果。
2.
Generalized strictly diagonally dominant matrix play an important role in matrix theory and real applications.
广义严格对角占优矩阵在矩阵理论和实际应用中具有重要的作用和意义。
5) generalized strictly diagonally dominant matrix
广义严格对角占优矩阵
1.
α-diagonally dominant matrices andcriteria for generalized strictly diagonally dominant matrix;
α-对角占优矩阵与广义严格对角占优矩阵的判定
2.
A is a generalized strictly diagonally dominant matrix,both Jacobi and Gauss-Seidel iterative methods of Equation Ax=b converge.
对广义严格对角占优矩阵A给出了解线性方程组Ax=b的Jacobi迭代法及Gauss-Seidel迭代法均收敛的证明。
3.
We present some simple practical criteria for verifying whether a locally diagonally dominant matrix is a generalized strictly diagonally dominant matrix.
引进局部对角占优矩阵的概念,得到这类矩阵的一些性质,给出了局部对角占优矩阵为广义严格对角占优矩阵的简单而实用的判定准则。
6) strictly diagonally dominant matrices
严格对角占优矩阵
1.
Generalized strictly diagonally dominant matrices and nonsingular M-matrices are two kinds of important matrices.
广义严格对角占优矩阵与非奇 M矩阵是非常重要的两类矩阵。
2.
In this note,based on the estimation of the inverse elements of strictly diagonally dominant matrices,some new upper and lower bounds on determinants for H-matrices are further investigated,which improves some classical ones.
基于对严格对角占优矩阵类逆元素的估计,对有着广泛应用前景的H-矩阵类的行列式的估计问题,作了进一步的研究,所得结果推广和改进了一些经典结论。
补充资料:严格
严肃而认真,用于执行制度或掌握标准时:严格要求|严格执行各项规定。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条