1) completely non-normal operator
完全非正规算子
2) anormal operator
非正规算子
3) complete semi-normal
完全半正规
4) complete normality
完全正规性
5) absolutely semi hyponormal composition operator
完全半亚正常算子
6) normal operator
正规算子
1.
The concept of a special normal operator, self-conjugate operator, in Hilbert space was extended to a polynomial conjugate operator.
将Hilbert空间上特殊的正规算子———自共轭算子的概念推广到多项式共轭算子。
2.
The properties of the operator and the necessary and sufficient conditions for the regular value to exist were studied using the concept and properties of normal operators in Hilbert space, the spectrum mapping principle and analogy.
应用希尔伯特空间上正规算子的概念、性质、谱映射定理和类推的方法,研究了该类算子的性质及正则值存在的充要条件。
3.
The properties of the polynomial conjugate operator and the necessary and sufficient conditions for the regular valve to exist are studied by using spectral decomposition and properties of normal operator in Hilbert space.
应用希尔伯特空间上正规算子的概念,性质和谱分解定理,研究了多项式共轭算子的性质及正则值存在的充要条件。
补充资料:正规子半群
正规子半群
nonnal sub-semi-group
正规子半群[仪曰司劝一胭‘一,叫p;皿opM~aano压no几yrp”扭a],半群S的 满足下述条件的子半群H:对任意满足xy‘S的x,y任S‘(记号夕见正规复形(加m司印nlp嫉”和任意h任H,关系xhy〔H与x夕任H等价.5的一个子集是正规子半群,当且仅当在S到某个带单位元的半群(阴n刀一grouP)的满同态下,它是单位元的完全反象.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条