说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> P-完全正规空间
1)  P-completely normal space
P-完全正规空间
1.
In this paper,the concepts of P-continuity mapping,P-completely regular spaces and P-completely normal spaces are defined in a topological space.
在拓扑空间(X,)中定义了P-完全正则与P-完全正规空间和P-连续映射等概念,讨论了P-完全正则与P-完全正规空间的遗传性、乘性、同胚不变性等拓扑性质,给出了P-完全正则空间,P-完全正规空间与Pi空间之间的关系。
2)  P-completely regular space
P-完全正则空间
1.
In this paper,the concepts of P-continuity mapping,P-completely regular spaces and P-completely normal spaces are defined in a topological space.
在拓扑空间(X,)中定义了P-完全正则与P-完全正规空间和P-连续映射等概念,讨论了P-完全正则与P-完全正规空间的遗传性、乘性、同胚不变性等拓扑性质,给出了P-完全正则空间,P-完全正规空间与Pi空间之间的关系。
3)  completely normal spaces
完全正规空间
1.
This paper gives a kind of special normal spaces—completely normal spaces,and discusses its nature.
给出了一类特殊的正规空间———完全正规空间 ,并讨论了它的性质 。
4)  strong S-completely regular(normal) spaces
强S-完全正则(正规)空间
5)  S-completely regular(normal) spaces
S-完全正则(正规)空间
6)  Strong Completely Normal L-Topological Spaces
强完全正规L-拓扑空间
补充资料:正规空间


正规空间
normal space

正规空l’N[加m川凡,沈;HopM“研oe npoc印组c卿] 满足公理T4(见分离公理(SePaJ旧tion~m”的拓扑空间(t巩”10妙比1 sPace),在此空间中单点集是闭集,并且任何两个互不相交的闭集均可用邻域分离(即含于互不相交的开集中).正规空间是完全正则空间(complddy~r卿llar印ace)(T袱~空间)的特款,在维数论(曲理璐mthe叮)中特别重要.正规空间的任何闭子空间是正规空间(正规性对闭集有遗传性).一个空间的所有子空间如果都是正规空间,则称为遗传正规的(址化山颐ly nom如),一个空间是遗传正规空间的充分条件是:它所有的开子空间都是正规空间;充要条件是:任何两个集合,如果其中任何一个均不含另一个的接触点,则可用邻域分离.一个正规空间的每个闭集如果都是可数多个开集之交,则称为完满正规的(讲巧比勿n0In创).任何完满正规空间都是遗传正规空间. 两个正规空间的乘积不必是正规空间,甚至正规空间与线段之积也可以是非正规空间. 就一般性而言,在正规空间与完全正则空间之间,还有几类重要的空间.与正规空间接近的这些空间中,首先出现的是所谓拟正规(q瑙”i~norn创)空间,或二正规(二一nonnal)空间(【2』).这些是TH-x~空间,其中任何两个互不相交的7r集(兀·韶招)均可用邻域分离.7r集是有限多个闭的典范集(cano-nicalset)之交.一个T”x~空间,如果其中任何两个互不相交的闭的典范集均可用邻域分离,则称为K正规(K一nonn目)空间(【31).一个兀正规空间,如果其中任何闭的典范集都是可数多个开的典范集之交,则称为完满K正规(脚叙Uy‘.nom创)空间.蚀~、企规空间葵了拟正规空间类、完满‘’j鲡空间类依次下降,依次包含,并且其中任何两类不相等.【补注】正规空间的特性也可以用下述两个陈述来刻圈二 l)y]匹Ic田引理(U月旧ohn」ellm坦):若A,B三X是互不相交的闭集,则存在连续函数f:X~〔0,1j,使得fI,兰O,fl,‘1.换言之,任何两个互不相交的闭集均可由连续函数分离. 2)T七比一yp‘l叨扩张定理(T七你·U刁sobne川翔}s咖也阳比m):若A‘X是闭集,而f:A~【0,l]连续,则f可以扩张为一个连续函数f:x~【0,1].M.E.Rudin(【A3」)曾经构造出一个正规空间X,使得Xx【0,l】不是正规空间,即所谓的Do认ter空间(Dowker sPace). 空间X称为集体正规(eo认戈tion.场唱c加mlal)空间,如果对x中任何离散的子集族{F二::〔A},都存在一个离散的开集族{U:::eA},使得对所有的“‘A有F。CU。.这里子集族{Y二::‘A}称为离散的(曲c记忱),如果对任何x‘X都有一个开邻域U二,至多与一个Y。相交.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条