说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> Hilbert零点定理
1)  Homogeneous Polynomial Germs
Hilbert零点定理
2)  symbol method/Hilbert nullstellentz
符号法/Hilbert零点定理
3)  theorem of zero point
零点定理
1.
Furthermore,it also discusses the application of theorem of zero point in our life,to achieve the goal of combining theory and practice in mathematical education.
高等数学中的零点定理是闭区间上连续函数的一个重要性质,利用它既可以证明方程根的存在性或求根的近似值,即解“等式”问题,又可以解“不等式”问题,本文从生活中谈谈零点定理的几个应用,以达到在数学教育教学中理论与实践相结合的作用。
4)  Zero-Point Theorem
零点定理
1.
Through some examples the author enumerates three kinds of problems testifying the existence of formula root and further proves it by using Zero-Point Theorem, Rolle Theorem , Lagrange Middle Theorem , reduction ad absurdum proof,etc.
通过例题列举了利用零点定理、罗尔定理、拉格朗日中值定理,反证法等证明方程根存在的三类问题。
2.
This article extends the zero-point theorem for continuous functions from a closed interval to other types of intervals,and a series of zero-point theorems for continuous functions on relevant intervals are obtained,so that the theory on the zero-point theorem can be applied in more general cases.
将闭区间上连续函数的零点定理扩展到其它区间上,得到若干个相应区间上连续函数的零点定理,从而使零点定理理论更完善、应用更广泛。
5)  Zero point theorem
零点定理
1.
In this paper ,the inferences and their proof about the property for continuous function of closed interval -Zero point theorem, Intermediate value theorem and the mean value theorem for derivatives-Rolle theorem ,Lagrange mean value theorem are given.
本文给出了闭区间上连续函数的性质定理———零点定理,介值定理,微分中值定理———罗尔定理,拉格朗日中值定理的推论及其证明,将函数在闭区间上连续的条件改为在开区间内连续且极限存在(或为∞)的条件,从而拓宽了定理的应用范围。
2.
In this paper we summarize several kinds of identification methods of the Zero point theorem,and discusse the way of exploring the zero point of function.
总结了零点定理的几种证明方法,并讨论了函数零点的求解方法。
6)  zero theorem
零点定理
1.
As applications of the above zero theorem, we deduce many new mapping theorems.
作为上述零点定理的应用,当T,C为奇算子时,我们获得一些新的映象定理。
补充资料:[3-(aminosulfonyl)-4-chloro-N-(2.3-dihydro-2-methyl-1H-indol-1-yl)benzamide]
分子式:C16H16ClN3O3S
分子量:365.5
CAS号:26807-65-8

性质:暂无

制备方法:暂无

用途:用于轻、中度原发性高血压。

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条