1) The infinite-dimensional real Nullstellensatz
无限维实零点定理
2) real Nullstellensatz
实零点定理
1.
In this paper, we estalbish the real Nullstellensatz in infinite-dimensional spaces, and characterize those ordered fields for which the indnite-dimensional real Nullstellensatz holds via the Zariski topology of affine spaces and the ordering structure of fields respectively.
在本文中,我们建立了无限维空间中的实零点定理,同时从仿射空间的拓扑结构和域的序结构两个方面,分别刻划了适合无限维实零点定理的序域。
3) zeropoint limiting theorem
零点极限定理
4) theorem of zero point
零点定理
1.
Furthermore,it also discusses the application of theorem of zero point in our life,to achieve the goal of combining theory and practice in mathematical education.
高等数学中的零点定理是闭区间上连续函数的一个重要性质,利用它既可以证明方程根的存在性或求根的近似值,即解“等式”问题,又可以解“不等式”问题,本文从生活中谈谈零点定理的几个应用,以达到在数学教育教学中理论与实践相结合的作用。
5) Zero-Point Theorem
零点定理
1.
Through some examples the author enumerates three kinds of problems testifying the existence of formula root and further proves it by using Zero-Point Theorem, Rolle Theorem , Lagrange Middle Theorem , reduction ad absurdum proof,etc.
通过例题列举了利用零点定理、罗尔定理、拉格朗日中值定理,反证法等证明方程根存在的三类问题。
2.
This article extends the zero-point theorem for continuous functions from a closed interval to other types of intervals,and a series of zero-point theorems for continuous functions on relevant intervals are obtained,so that the theory on the zero-point theorem can be applied in more general cases.
将闭区间上连续函数的零点定理扩展到其它区间上,得到若干个相应区间上连续函数的零点定理,从而使零点定理理论更完善、应用更广泛。
6) Zero point theorem
零点定理
1.
In this paper ,the inferences and their proof about the property for continuous function of closed interval -Zero point theorem, Intermediate value theorem and the mean value theorem for derivatives-Rolle theorem ,Lagrange mean value theorem are given.
本文给出了闭区间上连续函数的性质定理———零点定理,介值定理,微分中值定理———罗尔定理,拉格朗日中值定理的推论及其证明,将函数在闭区间上连续的条件改为在开区间内连续且极限存在(或为∞)的条件,从而拓宽了定理的应用范围。
2.
In this paper we summarize several kinds of identification methods of the Zero point theorem,and discusse the way of exploring the zero point of function.
总结了零点定理的几种证明方法,并讨论了函数零点的求解方法。
补充资料:无限维空间
无限维空间
infinite-dimensional space
无限维空I’N[词训妞一曲】.‘0“目印暇;6ee劝”e,。oMep-Hoe npocTp曲cT加」 一个正规的Tl空间X(见正规空间(加mulsPa、ce)),使得对于任何n-一1,O,I,…都不满足不等式d而X(。,即X摊必,并且对任何。二0,1,…存在X的有限开覆盖口。,使得加细口。的任何有限覆盖的重数都>n十1.无限维空间的例子有H川祀rt立方体(Hilbert cube)I的和玫xonoa立方体(T正五o-nov cube)r.泛函分析中碰到的大多数空间也都是无限维空间. 一正规的T;空间X称为在大(小)归纳维数(la卿(sn飞l且)泊ducti记dlme比1on)意义下的无限维空间,如果不等式Ind延n(ind簇n)对任何。=一1,0,1,…都不成立.若X是无限维空间,它就是在大归纳维数意义下的无限维空间.如果X还是紧空间,它也就是在小归纳维数意义下的无限维空间.一个度量空间是无限维空间,等价于它在大归纳维数意义下是无限维空间.存在一些有限维紧统,在小(因而在大)归纳维数意义下是无限维空间.(截至目前)还不知道是否存在一个紧统(或一个度量空间),在小归纳维数意义下是有限维空间,而在大归纳维数意义下却是无限维空间. 研究无限维空间最自然的方法之一,是引进小超限维数indX和大超限维数Ind X.这种方法在于把大小归纳维数的定义推广到无限序数上.超限维数indX和l刀dX并非对所有无限维空间都有定义.例如,对Hilbert立方体而言,两者均无定义.大超限维数对空间日尸无定义,但indU尸=田。,这里U尸是”维方体尸(n=O,1,…)的离散和. 若超限维数indX(IndX)对正规空间X有定义,那么这个维数等于一个序数,其基数不超过X的权wX(大权Wx).特别是,若X具有可数基,则有indX(田,;若X是紧空间,也有haX<。,.对于度量空间,也有IndX<田:.若,<田、,则存在紧统s:和L:,使得IndS:=“,初L。=“.对任何序数“<田、,存在度量空间戈,使得ind戈=“.如果超限维数IndX有定义,则超限维数indX也有定义,并且泊dX簇】hdX.己经构造出一些度量紧统,使得超限维数玩dx有定义,并且田。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条