说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 零点极限定理
1)  zeropoint limiting theorem
零点极限定理
2)  limiting zero point
极限零点
1.
By deriving limiting zero point of the equation,some sufficient conditions that guarantee the existence and uniqueness of traveling wave solution of this equation are obtained.
通过讨论方程的极限零点和非极限零点,获得了保证其行波解存在惟一性的充分条件。
3)  The infinite-dimensional real Nullstellensatz
无限维实零点定理
4)  theorem of zero point
零点定理
1.
Furthermore,it also discusses the application of theorem of zero point in our life,to achieve the goal of combining theory and practice in mathematical education.
高等数学中的零点定理是闭区间上连续函数的一个重要性质,利用它既可以证明方程根的存在性或求根的近似值,即解“等式”问题,又可以解“不等式”问题,本文从生活中谈谈零点定理的几个应用,以达到在数学教育教学中理论与实践相结合的作用。
5)  Zero-Point Theorem
零点定理
1.
Through some examples the author enumerates three kinds of problems testifying the existence of formula root and further proves it by using Zero-Point Theorem, Rolle Theorem , Lagrange Middle Theorem , reduction ad absurdum proof,etc.
通过例题列举了利用零点定理、罗尔定理、拉格朗日中值定理,反证法等证明方程根存在的三类问题。
2.
This article extends the zero-point theorem for continuous functions from a closed interval to other types of intervals,and a series of zero-point theorems for continuous functions on relevant intervals are obtained,so that the theory on the zero-point theorem can be applied in more general cases.
将闭区间上连续函数的零点定理扩展到其它区间上,得到若干个相应区间上连续函数的零点定理,从而使零点定理理论更完善、应用更广泛。
6)  Zero point theorem
零点定理
1.
In this paper ,the inferences and their proof about the property for continuous function of closed interval -Zero point theorem, Intermediate value theorem and the mean value theorem for derivatives-Rolle theorem ,Lagrange mean value theorem are given.
本文给出了闭区间上连续函数的性质定理———零点定理,介值定理,微分中值定理———罗尔定理,拉格朗日中值定理的推论及其证明,将函数在闭区间上连续的条件改为在开区间内连续且极限存在(或为∞)的条件,从而拓宽了定理的应用范围。
2.
In this paper we summarize several kinds of identification methods of the Zero point theorem,and discusse the way of exploring the zero point of function.
总结了零点定理的几种证明方法,并讨论了函数零点的求解方法。
补充资料:极限定理


极限定理
limit theorems

  极限定理[场‘td挂如曰.1招;npe八e月‘,。e犯opeM。],概平论中的 概率论中一类定理的通称,这些定理为大量随机源共同作用的结果呈现某种规则性给出条件.由J.氏n幻幽(1713)和P.加place(1812)建立的最初的极限定理,论述了某一事件E在n次独立试验中出现的频率拜。/n偏离其概率p(0O,不等式 }sA} !——{尸C }n”1成立的概率当n~的时趋于零. 关于可应用大数律的很一般的条件首先由n.月.qe6I,lllles(1867)求出,随后又由A.A.MapKos(1侧沁)加以推广.关于可应用大数律的必要与充分条件的问题,由A H.K~叮oPoB(1928)彻底解决.如果所有随机变量有共同的分布函数,那么这些条件就简化为一个:x。有有限的数学期望(这由A.只.X月1护丑HH在1929年证明). 中心极限定理.称中心极限定理对序列(l)成立,如果对任意的:、和:2,不等式 万一B。O, C,二cl+二‘+c。,如果当刀一二时L。=C。/B:+‘趋于零,那么中心极限定理对(1)成立.中心极限定理可应用的条件问题的最终解答,就一般轮廓而言,是由C.H.执p-山祀翻(1926)得到,并由W Feller(1935)完成的.在中心极限定理的条件下,当:。随n趋于无穷而无界地增长时,形如、。一A:>:。B,不等式成立的概率用l一中(艺。)逼近的相对精度可以是很低的.为增加此精度而必须的修正因子,由关于大偏差概率的极限定理表出(见大偏差的概率(probabi五ty ofl盯罗由访a-tio扔);C价”lx牙定理(Cm刀记rthcorem)).先是H.C扮1记r及W.FeUer,后又有幻B.刀阮朋以与其他人研究了此问题.有关这一学科分支的典型结果,最方便的是用独立同分布随机变量Xl,XZ,…的和(2)为例来解释,其中任X,一o且。X,一1,因此有A。一。,B。二石· 例如,考虑不等式 s,)z。石的概率,它等于1一F。(:。),其中F。(z。)是随机变量s。/杯的分布函数,而对固定的:。二:,当。一,的时有 1一F。(:)~l一小(:).(3)如果:。依赖于n且当n~的时有z。~的,那么就有 l一F,(z,)~0及1一小(z,)~0,而公式(3)是无用的.这时有必要获得逼近的相对精度即1一F。(:,)与I一小(:。)之比的界.特别地,自然产生的问题是,在什么条件下,当z。~的时, l一F_f万、 一一1.(4、 l一中(z。) 要关系式(4)对任意增长的:,(事实上只要对其阶大于石的:。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条