说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 负相伴高斯随机变量序列
1)  negatively associated Gaussian sequences
负相伴高斯随机变量序列
1.
In this paper,by applying the Skorohod martingale embedding theorem,we prove a strong invariance principle for negatively associated Gaussian sequences under power decay rates.
利用鞅的Skorohod表示,在序列是高斯的且序列的协方差系数以幂指数速度递减的条件下,证明了负相伴高斯随机变量序列的一个强不变原理。
2)  Negatively dependent random sequence
负相关(ND)随机变量序列
3)  Correlated orthogonal Gaussion sequence
相关高斯随机序列
4)  associated random variables
相伴随机变量
1.
A functional type of almost sure central limit theorem is given for a sequence of stationary associated random variables,under the assumption that L(n)=Var X_1+2 sum from n to j=2 Coy(X_1,X_j) is a slowing varying function at infinity.
对于均值为零的平稳相伴随机变量序列,首先证明了在L(n)=EX_1~2+ 2 sum from n to j=2 Cov(X_1,X_j)是一个缓变函数的条件下的泛函型几乎处处中心极限定理。
5)  negatively associated sequence
负相关随机序列
6)  associated random variable sequence
相协随机变量序列
1.
This paper presents some almost sure convergence properties and a strong law of large numbers for the partial sum of associated random variable sequences based on the Hajek-Renyi inequality for associated random variables and the Chung-Erdos inequality for event sequences using the Kronecker lemma and the Borel-Cantelli lemma,which generalize and improve the result in related literature.
文章基于相协随机变量序列的Hajek-Renyi不等式和事件序列的Chung-Erdos不等式,利用Krone-cker引理和Borel-Cantelli引理,给出相协随机变量序列部分和的几乎处处收敛性和强大数定律型的结果,推广和改进了吴爱娟论文中定理2和定理3的结果。
补充资料:负相关
分子式:
CAS号:

性质:在回归与相关分析中,表示因变量,y与自变量x相关程度的相关系数г<0,称y与x为负相关。即y随x增大(减小)而减小(增大)。

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条