1) sequence of dependent d iscrete variables
离散相依随机变量序列
3) M-dependent random variable sequence
m-相依随机变量序列
4) associated random variable sequence
相协随机变量序列
1.
This paper presents some almost sure convergence properties and a strong law of large numbers for the partial sum of associated random variable sequences based on the Hajek-Renyi inequality for associated random variables and the Chung-Erdos inequality for event sequences using the Kronecker lemma and the Borel-Cantelli lemma,which generalize and improve the result in related literature.
文章基于相协随机变量序列的Hajek-Renyi不等式和事件序列的Chung-Erdos不等式,利用Krone-cker引理和Borel-Cantelli引理,给出相协随机变量序列部分和的几乎处处收敛性和强大数定律型的结果,推广和改进了吴爱娟论文中定理2和定理3的结果。
5) Negatively dependent random sequence
负相关(ND)随机变量序列
6) Discrete random sequence
离散随机序列
补充资料:离散时间周期序列的离散傅里叶级数表示
(1)
式中χ((n))N为一离散时间周期序列,其周期为N点,即
式中r为任意整数。X((k))N为频域周期序列,其周期亦为N点,即X(k)=X(k+lN),式中l为任意整数。
从式(1)可导出已知X((k))N求χ((n))N的关系
(2)
式(1)和式(2)称为离散傅里叶级数对。
当离散时间周期序列整体向左移位m时,移位后的序列为χ((n+m))N,如果χ((n))N的离散傅里叶级数(DFS)表示为,则χ((n+m))N的DFS表示为
式中χ((n))N为一离散时间周期序列,其周期为N点,即
式中r为任意整数。X((k))N为频域周期序列,其周期亦为N点,即X(k)=X(k+lN),式中l为任意整数。
从式(1)可导出已知X((k))N求χ((n))N的关系
(2)
式(1)和式(2)称为离散傅里叶级数对。
当离散时间周期序列整体向左移位m时,移位后的序列为χ((n+m))N,如果χ((n))N的离散傅里叶级数(DFS)表示为,则χ((n+m))N的DFS表示为
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条