3) an particle swarm optimization based on self-adaptive Escape Velocity(AEPSO)
自适应逃逸微粒群算法(AEPSO)
5) Particle swarm optimization(PSO)
微粒群算法
1.
This paper systematically introduces and analyzes the background,the principle,process and parameters of particle swarm optimization(PSO) algorithm,and their influence on optimization performance of PSO.
微粒群算法(PSO)是继蚁群算法提出之后的又一种新的进化计算技术。
2.
The Particle Swarm Optimization(PSO) is an evolutionary computational method,which may be conveniently employed to execute random and global search.
微粒群算法(PSO)是新近出现的一种仿生算法,具有简单容易实现,而且随机搜索的优点,使得搜索不易陷于局部最优。
3.
To resolve this problem,a new GMM optimization method was proposed based on Particle Swarm Optimization(PSO).
为了解决传统高斯混合模型(GMM)对初值敏感,在实际训练中极易得到局部最优参数的问题,提出了一种采用微粒群算法优化GMM参数的新方法。
6) PSO
微粒群算法
1.
APPLICATION OF PSO IN OPTIMAL DESIGN OF HOT OIL PIPELINE;
应用混合微粒群算法优化设计热油管道
2.
Solution of Flow Shop Scheduling Problem Based on PSO;
微粒群算法的置换Flow-Shop调度问题
3.
Texture synthesis image completion based on PSO;
基于微粒群算法的纹理合成图像修补方法
补充资料:逃逸
1.亦作"逃佚"。 2.逃跑。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条