说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 有理函数积分
1)  rational function integral calculus
有理函数积分
1.
The partial fraction expansion of rational function integral calculus
有理函数积分的分式化简
2)  integral method of rational functions
有理函数积分法
1.
A integral method of rational functions is proposed to seek explicit exact solutions of evolution equations with polynomial nonlinear terms of any powers.
引入了一种求解具有任意次非线性项的演化方程精确解的有理函数积分法,该方法将未知函数的一阶导数展开为未知函数的多项式,通过齐次平衡法确定多项式的次数,然后利用有理函数积分法求解未知函数。
3)  fractionnal rationnal function
分数有理函数
4)  rational proper fraction function
有理真分式函数
1.
The indefinite integral formula of rational proper fraction function is worked out by utilizing the relation between derivation and indefinite integral, and indefinite integral is calculated by using derivative.
本文利用求导与不定积分的关系,得出了有理真分式函数不定积分公式,并利用导数计算其不定积分。
5)  ratinal fractional function
有理分式函数
1.
Fram teaching, this paper has found out the way of solving inverse laplace transformation of ratinal fractional function by using the method of partial fruction.
从教学出发,论证了用部分分式方法求有理分式函数F(s)拉普拉斯逆变换的方法。
6)  function integral
函数积分
1.
First an proximate expression of Gauss type function integral is deduced with proper accuracy, and then a scheme based on modified radial basis function (RBF) neural networks is proposed.
导出了在一定精度下高斯型函数积分近似表达式,利用径向基函数(RBF)网络具有良好的逼近任意非线性映射的特点,提出了一种改进的RBF网络方法以实现对高斯型函数积分。
补充资料:有理函数


有理函数
rational Auction

·有理函数[.‘.司加“甫佣;p哪on幼研朋切.目耳职] l)有理函数是函数w=R(z),其中R(z)是公的有理表达式,也就是说,这个表达式是从自变量z和某有限个(实或复)数,通过有限次算术运算得到的.有理函数可以(不唯一地)写成 刀了,、=里(丝州 Q(么)的形式,其中p,Q为多项式,且Q(:)毕0.这些多项式的系数称为有理函数的系数(以冷场汤改由of血拍石。业lfiJ曰=tj on).函数P/Q称为不可约的,如果尸和Q没有公共零点(即,p和Q为互素的多项式).任意有理函数都可写成不可约分式R(:)=尸(习/Q(习;若尸和Q的次数分别为m和n,那么R(:)的次数可以认为是对(。,的或是数 万=max{m,n}· 当n‘O时,(m,n)次有理函数,即多项式(Pol班lo面al),也称为整有理函数(日吐j民花石“阁丘田c-tion).否则,称为分式有理函数(rh犯tional一m石。nalfL川e- tioll).恒为。的有理函数R(劝二O的次数是不定 义的.如果爪n时的点之外,都是有定义的而且还是解析的.注意,当m>n时,R的极点的重数之和等于它的次数N.反之,如果R是一个解析函数,在扩充的复平面上,它仅有的奇点是有限多个极点,那么R必为有理函数. 有理函数经过算术运算(不能用R(z)二0去除)仍得有理函数、因此全体有理函数构成一个域.一般地说,系数在某一域内的有理函数全体构成一个域.若R.(:),RZ(z)为有理函数,则R、(R:(z))仍为有理函数.次数为N的有理函数的p阶导数是次数不超过(p十1)N的有理函数.有理函数的不定积分(或原函数)必为某有理函数与形如c,fog(z一b,)的一些表达式之和.如果有理函数对一切实数x均是实的,那么不定积分丁R(二)dx必能写成一个实系数的有理函数R。(x)与如下形式 e‘.IOglx一b,!,M,log(x,+Pjx+。,), 戈arctg贵粉,‘一‘,…,r;,一1,…,5的表达式以及一任意常数c之和(其中c,,,b,,Pj,马如(2)所示,而M,,戈为实数)·函数R。(x)可用诀lp.,a月a。亩法〔伪切艰功由拓mdhod)求出,这样做可以省去将R(x)分解成部分分式(2)的运算. 为了计算方便,可以用有理函数来逼近已给的函数.已有许多研究涉及多个实变量或多个复变量的有理函数农=尸厂Q,其中P与Q是这些变量的多项式,而Q笋0.此外也有对抽象有理函数 R一二竺已止二A,气 B:。,+一+B月。门的许多研究,这里小,,中2,…是某个紧空间X上的线性无关函数,Al,二,A。,B,,…,B。均为常数·亦见分式线性函数“拍以沁耐~1的比rfo目川on);不,。-Bc翻.函数(Zhul叮vsha function).【补注】有关逼近结果,见h而通近(Pa配apPrD对·叮坦石on).2)代数簇上的有理函数(份tional丘田Ctfo留onan川罗braic珑triety)是有理函数经典概念的一种推广(见第一节).一个不可约代数簇(a唇braicVa余ty)X上的有理函数,是对(U,f)的一个等价类,其中u是X中的非空开子集,而f是U上的正则函数〔哩汕r丘mCtion),两个对(U,f)与(v,g)是等价的,是指在U自v上,f二g.x上有理函数全体构成一个域,记为k(X). 在x二sp戈R是一个不可约仿射簇(副肠朋姐康ty)的情形,X上有理函数构成的域与环R上分式函数构成的域重合.k上k(X)的超越次数称为簇X的维数(d加笠招ionof此姐康勿).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条