1) lateral core-pulling insert
侧向抽芯拼块
1.
The die-casting mould,which was casted on a horizontal coldpressing die-casting machine,consisted of cavity insert,lateral core-pulling insert driven by a hydraulic cylinder and core insert.
根据电动切割机外壳体是过半圆状开口式,整体呈罩形,一侧与电机齿轮箱体相连的特点,设计了一种新颖的模具结构,即将定模型芯设计成穿过侧向抽芯拼块与动模型芯配合组成的型腔,采用液压缸抽芯的一种结构、在卧式冷压室压铸机上压铸成型。
2) side core-pulling
侧向抽芯
1.
and the mold also had the functions of side core-pulling and compulsive demoulding,be able to realize the fully automation in whole moulding process.
同时该模具还具备侧向抽芯和强制脱模等功能,在整个产品成型过程中能实现全自动化生产。
2.
Through analyzing on the product structure,designed a simple and workable mold with half structure to solve the side core-pulling problems, simplified mold structure and saved mold cost.
通过对产品的结构分析,设计一种简单可行的哈夫结构模具,以解决侧向抽芯的问题,简化模具结构,节省成本。
3.
The mould features in the design of controlled interval pull rod and side core-pulling mechanism and operates smoothly and reliably.
分析了摇窗机电机塑件的成型工艺特点,介绍了注射模结构及工作过程,注射模设计的结构特点是采用定距拉杆、侧向抽芯,经生产实践验证,模具结构设计巧妙,操作方便,使用寿命长,塑件达到技术要求。
3) side core-drawing
侧向抽芯
1.
According to the structural characters of switch with uneven thickness wall, the advantages and disadvantages of different design projects are compared, and the injection mold with feasible structure are designed by inserting side core-drawing mechanism.
根据开关零件具有壁厚不均匀的结构特点,分析比较了不同设计方案的优缺点,设计出结构合理的插入式侧向抽芯机构的注射模。
2.
Both the structure design of injection mold which use guiding pin to realize side core-drawing, and the problems required attention in main parts design are introduced, the structure of this mold is compact, and reliable in movement, as well as saves costs.
介绍了利用导销实现侧向抽芯的注射模结构设计,以及主要零件设计应注意的问题,该模具结构紧凑,运动可靠,节约成本。
4) side core-pulling of sliding block
滑块侧抽芯
5) side core-pulling mechanism
侧向抽芯机构
1.
At the same time,introduce the principle of side core-pulling mechanism of gear and rack injection mold, and design gist of a rack.
常用的侧向抽芯机构是斜导柱、斜滑块,当塑件上的抽芯距较长、抽芯力较大或斜向侧抽芯时,斜导柱、斜滑块抽芯比较困难,而采用齿轮、齿条就非常方便。
6) side grading drawing-core
侧向分级抽芯
补充资料:抽芯成型高差大的滑块多级锁紧结构
在压铸模设计中, 常常会遇到同一抽芯而各成型高度相差较大的零件, 如果采用斜拉杆或弯销抽芯, 习惯上采取的措施是增加滑块的高度,以满足滑块的退位空间,其结果是滑块的重量增加,模框的强度降低。
图1 是汽车油泵调速器前壳压铸件示意图, Ⅰ- Ⅰ分型面需用抽芯才能完成脱模,其最低抽芯高度Hmin 为17mm, 最大抽芯高度Hmax为45mm, 为了保证滑块有足够的退位空间而不发生自锁, 滑块的高度必须大于或等于45mm。为避免抽芯距离过大造成滑块体积增加, 在设计中采用了局部增高多级锁紧结构,如图2 所示。P 是高于17mm低于45mm的面,N是高于45mm的面,M面是与N面同高且保证N 面受力平衡的辅助结构。α为抽芯角,β1 、β2 为锁紧角,β1 、β2 不仅具有锁紧作用,而且在开模抽芯时还具有让位的作用,所以β1 、β2 必须大于α, 而且β2 应大于β1 , 否则开模时, 滑块会出现自锁。锁紧角β2 也可以等于β1 , 但由于制造时有误差, 如果误差大, 则β1和β2 形成的锁紧面会出现干涉。在压铸件调速器前壳模具设计中, α取23°, β1 取26°, β2取30°,实现了安全生产。
总之, 对于那些抽芯高度相差大的滑块,采用多级锁紧结构,对减小滑块的重量、延长模具寿命,节约模具材料具有重要的作用。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条