说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 随机逼近定理
1)  Random approximation theorem
随机逼近定理
2)  Stochastic approximation
随机逼近
1.
A simple Algorithm of Model-Free Control with a Reformative Method of Simultaneous Perturbation Stochastic Approximation;
一种简易的无模型控制算法——改进的同时扰动随机逼近控制
2.
A stochastic approximation for parameters Markov decision processes;
参数Markov决策过程的随机逼近算法
3.
Enlightened by the technique used in extended least squares (ELS) algorithm for parameters identifying, based on stochastic approximation principle a new adaptive algorithm was concluded from EM algori.
本文借用增广最小二乘法(ELS)参数辩识算法中的运算技巧,应用随机逼近原理,在EM算法的基础上推导出一种具有自适应能力的离子通道信号参数估计技术,仿真证明其估计精度较高,稳健性强,而且易于实现。
3)  approximation theorem
逼近定理
1.
The extensions of internal function approximation theorem and overflow theorem and theirs applicitaons;
内函数逼近定理及上溢原理的推广及应用
2.
And then, the GFNN (generalized fuzzy neural network) is put forwand, the GFNN approximation theorem is proved.
文中证明了GFNN的函数逼近定理 ,并据此提出了GFNN的结构自组织和参数自学习算法 。
3.
Basic properties,generation theorems,approximation theorems,and perturbation theorems for exponentially bounded C-cosine functions are given.
本文引入了指数有界的C余弦算子函数的生成元,讨论了生成元的基本性质,建立了相应的生成定理、逼近定理及扰动定理。
4)  Approximation [英][ə,prɔksɪ'meɪʃn]  [美][ə'prɑksə'meʃən]
逼近定理
1.
The authors introduce completion and approximation of a quasi_measure according to completion and approximation of a classic measure and the properties of T _function of a quais_measure,complement completion of a fuzzy measure that is advanced and discuss completions of a fuzzy measure that is quasiadditive,subadditive or fuzzy_addtive etc.
由经典测度的完备定理、逼近定理及拟测度的特征T_函数的性质得到了拟测度的完备定理与逼近定理 ,并对已有的模糊测度的完备化做了进一步讨论 ,给出了拟可加、次可加、模糊可加等模糊测度的完备化 。
5)  Weierstrass approximation theorem
Weierstrass逼近定理
1.
On the Applications of Weierstrass Approximation Theorem;
Weierstrass逼近定理的应用
2.
By this way the famous Weierstrass approximation theorem is extended to the multi-function,and the detailed proof and verification in some space are given.
本文通过对有界闭区间的连续函数可用多项式序列来一致逼近的重要性质的分析,将著名的Weierstrass逼近定理推广到多元函数,并给出了详细的证明及在有些空间的验证。
3.
Extends Weierstrass approximation theorem to complex function case,and proves that "the space C is separable and its potency is c".
把Weierstrass逼近定理推广到了复函数的情形,并进而证明了"闭区间[a,b]上的连续函数(实或复)空间C[a,b]可分,且其势为c"。
6)  K.Fan approximation theorem
K.Fan逼近定理
补充资料:随机逼近
      在有随机误差干扰的情况下,用逐步逼近的方式估计某一特定值的数理统计方法。1951年,H.罗宾斯和S.门罗首先研究了此问题的一种形式:设因素x的值可由试验者控制,x的"响应"的指标值为Y,当取x之值x进行试验时,响应Y可表为Y=h(x)+ε,式中h(x)为一未知函数,ε为随机误差。设目标值为A,要找这样的x,使h(x)=A。分别以Y-A和h(x)-A代替Y和h(x)。不妨设A=0,问题就在于找方程h(x)=0的根x。例如若x为施药量,Y为衡量药物反应的某种生理指标,则问题在于找出施药量x,以使该生理指标控制于适当的值A。
  
  若随机误差 ε=0,且h(x)为已知函数,则数值分析中提供了许多近似解法。例如可用牛顿迭代法求解:从一适当选择的初始值x0出发,用迭代公式xi+1=xjjyj,式中yj=h(xj);但当h(x)未知且有随机误差干扰时,αj和yj无法算出。罗宾斯等将上述算法稍作修改,引进迭代程序xi+1=xj-bjYj,式中Yj为当x=xj时Y的响应值,bj为适当选定的常数。假定 h(x)为x的递增函数且增长速度不快于线性,而各次量测相互独立,则理论研究证明了,只要取bj>0满足则由此算法决定的序列{xj}以概率1收敛到x(见概率论中的收敛)。上述算法叫罗宾斯-门罗程序,这是随机逼近的开创性的工作。
  
  在有的问题中,要找的不是h(x)的零点,而是其极值点慜,它满足h′(慜)=0。但试验观测到的不是h′(x)+ε而只是h(x)+ε,故上述算法不能用于逼近慜。J.基弗和J.沃尔弗维茨依据用差商逼近h′(x)的想法在 1952年提出了一个算法(基弗-沃尔弗维茨程序)以解决估计慜的问题。
  
  1951年以来,随机逼近的研究已取得了很大的进展。在理论上,讨论了量测误差不独立的情形和带约束条件的情形,以及h(x)具有更一般性质的情形。也考虑了时间连续时的算法和修正系数bj的选择,并对算法的渐近性质作了深入的研究。在方法上,也从纯概率发展到结合使用微分方程等工具。随机逼近在优化问题、适应控制、调节及跟踪系统等方面都有应用。
  
  

参考书目
   M.T.Wasan,Stochastic ApproxiMation,cambridge Univ. Press,cambridge,1969.
   H.Robbins and S.Monro,A Stochastic Approximation Method,Ann. Math. Statist.,Vol.22(1),1951.
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条