1) min-max method
极小极大法
1.
Based on the covariance matrix above and using the cyclic algorithm(CA) and the min-max method proposed,low space-time sidelobes are achieved by optimizing waveform phases of the transmit signal waveforms with constant modulus.
基于该协方差矩阵,利用循环算法(CA)和极小极大法,通过优化波形相位设计出了具有低空域和时域副瓣的恒模发射信号。
2) Chebyshev (Tchebycheff) approximation
极小-极大法
3) minimax method
极小极大方法
1.
The existence and multiplicity results are obtained for a class of fourth-order nonlinear elliptic equations by the least action principle and the minimax methods,respectively.
通过极小化作用原理和极小极大方法得到了一类四阶非线性椭圆方程解的存在性和多重性。
5) max&min algebra
极大极小代数法
1.
Based on the max&min algebra algorithm,the forecast ware computes the end time of tasks of various schemes and this algorithm regards beginning time for processing parts as state variable with the end time forecasted of processing parts as variable exported.
基于极大极小代数法的预测器计算各种排序方案的完工时间,该算法以任务投入加工的时间作为状态变量,以预测的任务加工的完工时间作为输出变量,通过输入工艺路线矩阵、加工顺序矩阵和加工时间矩阵,根据生产活动状态变迁的规则建立状态变量的递推计算公式,经过多重循环求出所有状态变量的取值;最优控制器以加工顺序矩阵为控制变量,利用预测器逐步试探求解,最后稳定在性能指标最优的加工顺序矩阵的方案上;参数估计器对加工工时定额进行自适应地学习,利用反馈的真实的加工工时,不断修正定额并收敛到平均值。
6) minimax methods
极小极大方法
1.
The existence and multiplicity results are obtained for solutions of a class of the semilinear elliptic equations with Hardy terms by the least action principle and the minimax methods, respectively.
分别用极小作用原理和极小极大方法证明了一类具有Hardy项的半线性椭圆方程解的存在性和多重性。
2.
The existence of multiple solutions is obtained for Neumann problem of sublinear elliptic equations by the minimax methods in the critical point theory.
用临界点理论中的极小极大方法得到了次线性椭圆方程Neumann问题多重解的存在性。
3.
Some solvability conditions, including sublinear,subquadralic and superquadratic, and the corresponding existence results are summed up for periodic solutions of the second order Hamiltonian systems obtained by using the minimax methods.
本文综述了用极小极大方法得到的关于二阶Hamilton系统周期解的可解性条件及相关结果,包括次线性条件,次二次条件和超二次条件等方面的近期结果。
补充资料:极大算子和极小算子
极大算子和极小算子
maximal and mnmnal operators
极大算子和极小算子脚.劝加目邵目,汕面司啊呷rators;MaKC班Ma“比戚班M”n皿Ma几I.H丽姐epaT仰址] 由在具有紧支集的函数子空间上给定的微分表示式定义的算子的极大扩张和极小扩张(m助面旧1肚记mj刘h坦1 exte留ions).极大算子和极小算子的定义域可以分为许多情形具体描述,例如,对常微分算子、对椭圆算子、对常系数微分算子.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条