1) topology fusion
拓扑融合
2) topology aggregation
拓扑聚合
1.
Research on MPLS Network Topology Aggregation Algorithm;
MPLS网络拓扑聚合算法的研究
2.
So, a topology aggregation method based on weighted dominating set was considered which uses the bandwidth as the weight to satisfy the demand of bandwidth of the networks.
利用支配集可以将复杂的物理网络拓扑聚合成简单的虚拟拓扑,降低网络运行的开销。
3.
In this thesis,the research is focused on Topology Aggregation algorithm and Inter-Domain Resource Reservation Strategy that involved in inter-domain routing.
论文围绕ASON域问路由涉及到的拓扑聚合技术和域间资源预留策略展开研究。
3) Coupling topological
耦合拓扑
4) topology merging
拓扑合并
5) topologically mixing
拓扑混合
1.
In terms of continuous maps of tree,topologically mixing and toally topologically transitive are identical,and topologically ergodic and topologically transitive are identical.
指出:对树上连续自映射而言,拓扑混合等价于完全拓扑可迁,拓扑遍历等价于拓扑可迁,拓扑混合等价于拓扑弱混合。
6) topological mixing
拓扑混合
1.
Chaos in Set-valued Discrete Dynamical System and Topological Mixing
集值离散动力系统的混沌性与拓扑混合
2.
In this paper,the relationship of the properties of periodic density,chaos and topological mixing between a dynamic system and its quotient system is discussed,and we get the conclusion that those properties are equivalent respectively,so an important method to study the chaos of a dynamic system is gained.
文中讨论了一个动力系统与它的商系统的周期稠密性、混沌性以及拓扑混合性之间的相互关系,得到了这些性质分别是相互等价的等结论,从而得到了研究动力系统混沌性的一个重方法。
3.
The relations between topological mixingand topological exact of maps on one-dimensional compact manifold are discussed and a few conditions of topological mixing turning into exact are given.
讨论了一维自映射中拓扑混合与拓扑正合的关系,得到了拓扑混合映射成为拓扑正合的几个条件。
补充资料:拓扑结构(拓扑)
拓扑结构(拓扑)
topologies 1 structure (topology)
拓扑结构(拓扑)【t哪d哈eal structure(to和如罗);TO-no“orHtlec~cTpyKTypa」,开拓扑(oPen to和fogy),相应地,闭拓扑(closed topofogy) 集合X的一个子集族必(相应地居),满足下述J胜质: 1.集合x,以及空集叻,都是族。(相应地容)的元素. 2。(相应地2劝.。中有限个元素的交集(相应地,居中有限个元素的并集),以及已中任意多个元素的并集(相应地,居中任意多个元素的交集),都是该族中的元素. 在集合X上引进或定义了拓扑结构(简称拓扑),该集合就称为拓扑空间(topological sPace),其夕。素称为.l5(points),族份(相应地居)中元素称为这个拓扑空问的开(open)(相应地,闭(closed))集. 若X的子集族份或莎之一已经定义,并满足性质l及2。。(或相应地l及2衬,则另一个族可以对偶地定义为第一个集族中元素的补集族. fl .C .A二eKeaH及pos撰[补注1亦见拓扑学(zopolo群);拓扑空l’ed(toPo1O廖-c:,l印aee);一般拓扑学(general toPO】ogy).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条