1) Mixed topology
混合拓扑
2) topologically mixing
拓扑混合
1.
In terms of continuous maps of tree,topologically mixing and toally topologically transitive are identical,and topologically ergodic and topologically transitive are identical.
指出:对树上连续自映射而言,拓扑混合等价于完全拓扑可迁,拓扑遍历等价于拓扑可迁,拓扑混合等价于拓扑弱混合。
3) topological mixing
拓扑混合
1.
Chaos in Set-valued Discrete Dynamical System and Topological Mixing
集值离散动力系统的混沌性与拓扑混合
2.
In this paper,the relationship of the properties of periodic density,chaos and topological mixing between a dynamic system and its quotient system is discussed,and we get the conclusion that those properties are equivalent respectively,so an important method to study the chaos of a dynamic system is gained.
文中讨论了一个动力系统与它的商系统的周期稠密性、混沌性以及拓扑混合性之间的相互关系,得到了这些性质分别是相互等价的等结论,从而得到了研究动力系统混沌性的一个重方法。
3.
The relations between topological mixingand topological exact of maps on one-dimensional compact manifold are discussed and a few conditions of topological mixing turning into exact are given.
讨论了一维自映射中拓扑混合与拓扑正合的关系,得到了拓扑混合映射成为拓扑正合的几个条件。
4) topological mixing
拓扑混合性
1.
The minimality,topological transitivity and topological mixing of descendible mapping;
可降映射的极小性、拓扑传递性、拓扑混合性
5) weakly topolpgically mining
拓扑弱混合
6) weakly topological mixing
弱拓扑混合
1.
Show that if f∶S→S is weakly topological mixing and |deg (f) |≥2,then f is topological exact.
证明了圆周上的自映射f在|deg(f)|≥2时,弱拓扑混合与拓扑正合具有一致性。
补充资料:拓扑结构(拓扑)
拓扑结构(拓扑)
topologies 1 structure (topology)
拓扑结构(拓扑)【t哪d哈eal structure(to和如罗);TO-no“orHtlec~cTpyKTypa」,开拓扑(oPen to和fogy),相应地,闭拓扑(closed topofogy) 集合X的一个子集族必(相应地居),满足下述J胜质: 1.集合x,以及空集叻,都是族。(相应地容)的元素. 2。(相应地2劝.。中有限个元素的交集(相应地,居中有限个元素的并集),以及已中任意多个元素的并集(相应地,居中任意多个元素的交集),都是该族中的元素. 在集合X上引进或定义了拓扑结构(简称拓扑),该集合就称为拓扑空间(topological sPace),其夕。素称为.l5(points),族份(相应地居)中元素称为这个拓扑空问的开(open)(相应地,闭(closed))集. 若X的子集族份或莎之一已经定义,并满足性质l及2。。(或相应地l及2衬,则另一个族可以对偶地定义为第一个集族中元素的补集族. fl .C .A二eKeaH及pos撰[补注1亦见拓扑学(zopolo群);拓扑空l’ed(toPo1O廖-c:,l印aee);一般拓扑学(general toPO】ogy).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条