1) Generalized similarity of indefinite dimensional Hamiltonian operator matrics
无穷维Hamilton算子矩阵广义相似
2) infinite dimensional Hamiltonian operator
无穷维Hamilton算子
1.
Invertibility for a class of infinite dimensional Hamiltonian operators;
一类无穷维Hamilton算子的可逆性
2.
Spectral distribution for a class of infinite dimensional Hamiltonian operators;
一类无穷维Hamilton算子的谱分布
3.
A theorem on C_0 semigroups generated by a class of infinite dimensional Hamiltonian operators;
一类无穷维Hamilton算子的半群生成定理
4) generalized Hamilton matrix
广义Hamilton矩阵
1.
Generalized conjugate matrix and the their fundational properties are researched,we discuss the properties of generalized Hamilton matrix,the relation between the generalized conjugate matrix and generalized Hamilton matrix is given and many results are obtained.
提出了广义共轭辛矩阵的概念,对它们的基本性质进行了深入研究,并讨论了广义Hamilton矩阵的一些性质,给出了广义Hamilton矩阵与广义共轭辛矩阵之间的联系,获得了一些结果,推广了酉矩阵,Hermite矩阵与斜Hermite矩阵相应的结果,将正交矩阵的广义Cayley分解推广到广义共轭辛矩阵。
6) non-negatively infinite dimensional Hamiltonian operator
非负无穷维Hamilton算子
补充资料:无穷
无穷
infinity
无穷[刘茄妙;6ec幼。e,。oeT‘] 在多种数学分支中出现的一个概念,主要作为有限性概念的反意词.在分析和几何理论中无穷的概念用来表示“反常”或“无穷远”元素.无穷的概念用于集合论和数理逻辑—“无穷集”的研究中,也用于其他数学分支中. 功无穷小和无穷大变量(~bIe叮皿g田加de)的概念是数学分析中的基本概念,在无穷小概念的现代处理方法出现之前的思想是这样的,有限量是由无穷多个无穷小的“不可分量”组成的,这里的不可分量不是作为变量而是作为比任何有限量都小的常量(见不可分里法(访山佑ib此,n犯山闭of)).这种思想的例子之一是从有限到无穷的非常规的分解:唯一有意义的过程是把一个有限量划分成个数无限增加而大小无限减小的组成部分. 2)无穷也以“反常”的即无穷远几何映象的形式在完全不同的数学领域出现(见无穷远元(顾面忱ly-曲粉田t elelr℃nt).例如,直线a上的无穷远点被看成是“附加”到通常的诸有限点中的一个特殊的不变的对象.然而,在这里也能看到有限和无穷之间的不可分离的联系:考虑从不在直线a上的点为中心的投影,通过中心且与直线a平行的直线就对应于无穷远点. 具有相似特点的是用两个“反常”的数+的和一的而得到的实数系的完全化,这种完全化适合分析和实变函数论中的许多要求.用超限数(七2此肠te~-ber)田,臼+1,…,2。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条