1) Hermite-Generalized Antihamilton matrices
Hermite-广义反Hamilton矩阵
2) Hermite and generalized skew-Hamilton matrices
Hermite广义反Hamilton矩阵
1.
The least-square solutions of the inverse problem of Hermite and generalized skew-Hamilton matrices is discussed, and an expression of the solution is obtained.
讨论了Hermite广义反Hamilton矩阵反问题的最小二乘解,得到了解的具体表达式。
3) Hermitian-Hamiltonian matrix
Hermite-Hamilton矩阵
4) Hermite-generalized antihamilton matrix
Hermite-广义反Hamilton解
5) generalized Hermite matrix
广义Hermite矩阵
1.
This paper mainly considers the solution of generalized Hermite matrix equation.
本文主要讨论复数域上一类广义Hermite矩阵方程的求解。
6) generalized Hamilton matrix
广义Hamilton矩阵
1.
Generalized conjugate matrix and the their fundational properties are researched,we discuss the properties of generalized Hamilton matrix,the relation between the generalized conjugate matrix and generalized Hamilton matrix is given and many results are obtained.
提出了广义共轭辛矩阵的概念,对它们的基本性质进行了深入研究,并讨论了广义Hamilton矩阵的一些性质,给出了广义Hamilton矩阵与广义共轭辛矩阵之间的联系,获得了一些结果,推广了酉矩阵,Hermite矩阵与斜Hermite矩阵相应的结果,将正交矩阵的广义Cayley分解推广到广义共轭辛矩阵。
补充资料:Hermite矩阵
Hermite矩阵
Hennitian matrix
H白.11加矩阵IH均画脸粗..七妞:spM.T姗MaTP拙a},I允厅面加对称矩阵(H亡rrni6幻1一syr肚阴川crr以tr认),自共辘矩阵(女If一conj吸笋te打以加x) C上的一个方阵A=}}只*!},它等于它的卜晓“面te共辘矩阵 A*二矛二}}又‘},就是说,它的元素满足条件马*=丐.如果一切只*任R,则Herr面忆矩阵就是对称矩阵(syror吐tricrr么tr议).固定阶的H份mi加矩阵构成R上一个向量空间.如果A和B是两个同阶的H七rrnite矩阵,那么月刀+BA也是H七叮动把矩阵.在运算A·B“(拐十BA)/2之下,(”阶)Herinite矩阵构成一个J加伪.代数(Jordan碱罗bra).两个H七rr面把矩阵A和B的乘积月刀本身是H即画把矩阵当且仅当A与B可交换. 陀阶H自刀山te矩阵是一个n维酉空间的H即面te变换在一个标准正交基内的矩阵(见自伴线性变换(义甘-adjoint」in份r traJ旧fo~由刀)).另一方面,H比而把矩阵是一个n维复向量空间内H份倒触型(Herrni位川允曲)的矩阵.与H即面te型类似,H曲而祀矩阵可以在任何具有一个反对合的除环上定义. 一个H即rnjte矩阵的所有本征值都是实数.对于每一个Her血ite矩阵A,存在一个酉矩阵U,使得U一’AU是实对角矩阵.一个H即rnj七矩阵称为非负的(non-鸳参匕呢)(或半正定的(p优itiVe Seml一山丘币把)),如果它的一切主子式都是非负的;称为手牢的(娜itire盛币,面妞),如果它的一切主子式都是正的.非负(正定)石晓厅苗把矩阵对应于非负(正定)的H七rrni把线性变换和Herrnite型.A.几(址甩.‘撰
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条